AssessingStaffingNeedsforaSoftware
GiulianoAntoniol,AnielloCimitile,
GiuseppeA.DiLucca,MassimilianoDiPenta
DRAdipenta@unisannio.itBenevento,Italy
October17,2003
antoniol@ieee.org,cimitile@unisannio.it,dilucca@unisannio.it,
RCOST-ResearchCentreonSoftwareTechnology
UniversityofSannio,DepartmentofEngineering-PiazzaRoma,I-82100
FTSimulation
DRAFT
MaintenanceProjectthroughQueueing
2
Abstract
Wepresentanapproachbasedonqueueingtheoryandstochasticsimulationtohelpplanning,managingandcontrollingtheprojectstaffingandtheresultingservicelevelindistributedmulti-phasemaintenanceprocesses.
DatafromaY2KmassivemaintenanceinterventiononalargeCOBOL/JCLfinancialsoftwaresystemwereusedtosimulateandstudydifferentservicecenterconfigurationsforageographicallydistributedsoftwaremaintenanceproject.Inparticular,amonolithicconfigurationcorrespondingtothecustomer’spoint-of-viewandmorefine-grainedconfigurations,accountingfordifferentprocessphasesaswellasforrework,werestudied.
Thequeueingtheoryandstochasticsimulationprovidedameanstoassessstaffing,evaluateservicelevel,andassessthelikelihoodtomeettheprojectdeadlinewhileexecutingtheproject.Itturnedouttobe
aneffectivestaffingtoolformanagers,providedthatitiscomplementedwithotherproject-managementtools,inordertoprioritizeactivities,avoidconflictsandchecktheavailabilityofresources.
IndexTerms
softwaremaintenancestaffing,softwareprocessmanagement,discrete-eventsimulation,processmodeling,processsimulation,queueingtheory,scheduleestimation
DRAI.INTRODUCTION
projectlifespan.
levelasperceivedbycustomers.
October17,2003
Costandeffortestimationsareimportantaspectsofthemanagementofsoftwaremaintenance
projects.Softwaredevelopmentandmaintenancearelabor-intensiveactivities;theprojectcostisstrictlytiedtotherequiredeffort,i.e.,totheprojectstaffing.Intoday’scompetitivemarket,acompromisehastobefoundbetweentheservicelevelsexperiencedbythecustomersandestimationisnotaone-timeactivityatprojectinitiation.Initialestimatesshouldberefinedtheprojectcosts;sometimes,increasingtheprojectstaffingmaynotbeconvenient.Cost/effortthroughoutaproject[1],verifyingeachtimethelikelihoodtomeettheestablisheddeadline.
Thus,itisessentialtotracktheeffortspent,andre-estimatestaffinglevelthroughouttheentireTraditionaltoolssuchasPERT,CPM,Ganttdiagramsandearnedvalueanalysishelptoplan
andtracktheprojectactivities.However,theyplayalittleroletoassessthelikelihoodofmeetingtheprojectdeadline,tostaffmaintenanceprojects,tohelppredictingandtrackingtheservice
FTDRAFT
3
Weproposeanapproachbasedonqueueingtheoryandstochasticsimulationtodealwiththestaffing,theprocessmanagementandtheservicelevelevaluationofcooperativedistributedmaintenanceprojects.Themethodhasbeenvalidatedondatafromamassive1Y2KmaintenanceinterventiononalargeCOBOL/JCLfinancialsoftwaresystemofaEuropeanfirm.Upto80peoplewereassignedtotheproject,whichspannedacrossfourmaintenancecenters;maintainerswereorganizedintoteams;maintenanceteamsoperatedbothatthecustomersiteandhomesite.Allmaintenancecenterscooperatedunderthecoordinationofacontrolboard.Themainrespon-suitableworkload.
sibilityofthecontrolboardwastoavoidconflicts,assigningtoeachmaintenancecenter/teamaQueueingtheoryisawell-consolidatedfield.Earlystudiesonqueueingtheorydatebackto1900[3].Thetheoryhasbeensuccessfullyappliedtoalargevarietyofproblems:telephoneswitching/networkdesign,partrepairandmaintenancecenterstaffing,merchandisedistributionand,moregenerally,servicecentermanagement.Traditionalqueueingtheorycanbeadoptedtohelpprojectstaffing,restaffingandservicelevelevaluationatdifferentdates.Incomingmaintenancerequestsmaybethoughtofascustomersqueueingupatthesupermarketcheckoutcounters.Thetimespentinthequeueisrelatedtothecustomerarrivalrateandtothetypeofserviceobtained.Theperceivedservicelevels,measuredasqueueingsystemwaitingtimes,areobviouslyrelatedtothenumberofcounters,tothedistributionoftheservicetimes(i.e.,Increasingthenumberofcounters,alsocalledservers,decreasesthetimespenttoobtainaservice.However,increasingthenumberofserversmaynotbeeconomicallyconvenient:acompromisebetweencostsandcustomersatisfactionhastobepursued.
Queueingnetworkmodelsrepresenting,atdifferentlevelsofgranularity,themaintenanceprocesseswereconsidered.Amonolithicconfigurationcorrespondstothecustomer’scoarse-thenumberofitemseachcustomeracquires)andtotheconfigurationoftheservicecenters.
DRA1
grainedpoint-of-view,whilefine-grainedmodelsexplicitlyaccountfordifferentmaintenanceIntheproposedapproach,stochasticsimulationsofqueueingnetworkspermitafine-grained
processphases,projectdistributionacrossdifferentmaintenancecentersandreworkactivities.
evaluationofstaffinglevelsattheprojectstartupandclose-downwhenstatisticalequilibrium
Theterm“massive”isreferredtothosemaintenanceinterventions,suchasY2Kremediation,Euroconversionorphone
numberingchange,involvingalargenumberofapplicationssimultaneously[2].
October17,2003
FTDRAFT
4
(Seeequation(1)inSectionIII-A)isnotachieved.Theapproachalsoprovidesameanstoassessthelikelihoodofmeetingtheprojectdeadlineandbalancingtheworkloadbetweenmaintenancecenterswhileexecutingtheproject.Differentservicecenterconfigurationsmayexhibitdifferentperformancelevelsandmayincrease(withoutchangingthenumberofservers)theaverageperceivedservicelevel,aswellasincreasethelikelihoodofmeetingtheprojectdeadline.Thefeaturesdescribedabovecombinedwiththepossibilitytoviewthemaintenanceprocessfromaqueueingnetworkperspective(thusdeterminingtheoptimalnumberofservantsorrework),maketheproposedapproachavalidcomplementtothepreviouslymentionedmainstreamtechniques(PERT,CPM,etc.).
Thispaperextendsandcomplementspreviousworks[4],[5]withanewapproachtodealwithqueueingnetworks,representingdifferentprocessphasesormaintenanceteamallocations.Furthermore,byapplyingstochasticsimulation,statisticalequilibriumisnolongerrequired,thusallowinganevaluationofstaffinglevelsattheprojectstartupandclose-down,andperformdynamicrestaffing.Giventheassumptionsmade(detailedinSectionV-A),theproposedapproachisimmediatelyapplicabletomassivemaintenanceinterventions,suchascurrencyorphonenumberingchange,andeasilyextensibletomoresophisticatedmaintenanceprocesses.foreachmaintenancephase,aswellasconsideringtheeffectofphenomenasuchasabandon
DRAoffutureworks.
II.RELATEDWORK
forecastingmaintenanceresourcesandmanagingcosts.
October17,2003
Theremainderofthepaperisorganizedasfollows.Afteranoverviewontherelatedwork
(SectionII),basicnotionsonqueueingtheoryandstochasticsimulationaresummarizedinSectionIIIforthesakeofcompleteness.Then,SectionIVintroducestheproposedqueueingthecasestudymethodologyandtheadoptedtools.CasestudyresultsarepresentedinSectionVI.systemmodels.SectionVpresentsthecasestudydescription,theresearchquestionstoaddress,
Thelastsectionsarededicatedtoasummaryoflessonslearned,papercontributionsandoutline
Inthepast,severalstudiesattemptedtodrawrelationsbetweenproduct/processmetrics/analysis
andmaintenanceprocessimprovement(e.g.,[6],[7])orproductintrinsiccharacteristics(e.g.,
[8],[9],[10]),aimingatenhancingcustomersatisfactionandreducingcosts.Theseapproachesweremorefocusedonprocessorproductimprovementthandefining/assessingthestaffing,
FTDRAFT
5
In1981andthenin2000,B.W.Boehm[11],[12]proposedderivingthetestingeffortandtheannualmaintenancecostfromthedevelopmenteffort.TheCOnstructiveCOstMOdel(COCOMO)isfoundedonempiricalformulaeforsoftwarecostestimation;themodelusedinforwardengineeringisintegratedwiththeAnnualChangeTraffic(ACT)parametertoestimate,atthemacrolevel,maintenancecosts.Wieneretal.[13]presentedaformalmodel,basedontheRayleighmodel,toestimatetheneededmanpowerforprojectsintheBankTrustCompanydomain.
planningwhen/howtheywillbeservedtoreducetotaleffortandcosts.BriandandBasili[14]proposedamodelingapproach,basedonstatisticaltechniques,tosupporttheclassificationtask.LiteraturereportsseveralworksapplyingProcessSimulationModelingtoplan,manageandcontrolsoftwarelife-cycleactivities.Kellneretal.[15]describemotivationsandpurposesofsoftwaredevelopmentprocessmodelingandsimulation.Theyhighlightthefactorscharacterizingsimulationandclassifythemaintechniquesofsimulationandmodeling.AswillbedescribedinSectionIII,softwareprocesssimulationisusuallycarriedoutbyusingsystemdynamicsanddiscretemodelingparadigms.In[16]MartinandRaffo,toovercomesomeofthedisadvantagesofthetwoparadigms,proposeacombinedmodelthatrepresentsthesoftwaredevelopmentprocessasaseriesofdiscreteprocessstepsexecutedinacontinuouslyvaryingprojectenvironment.IssuesconnectedtoempiricalstudiesofsoftwareprocesssimulationmodelingarediscussedAnimportantissuewhenfacingmaintenancerequestsisthatofclassifyingthemtoimprove
DRAsimulationmodeloutputs.
October17,2003
in[17],withparticularreferencetotheestimateofsimulationparametersfromreal-worlddata,andtocompareactualresultstothemodel’sresults.Thepaperdiscussesseveralstatisticalandanalyticaltechniquestochooseamongvariousprocessalternatives,aswellasexamplesofhowutilityfunctions,financialmeasuresanddataenvelopmentanalysiscouldbeusedtoevaluateAnimportantcontributiontotheliteratureofprocesssimulationhasbeengivenbyAbdel-
Hamid[18],[19],[20].In[18]Abdel-Hamidpublishedanapproachbasedonsystemdynamicsmodelingtosimulatethestaffingofrealworldsoftwareprojects;themodelhasbeenusedtoverifythedegreeofinterchangeabilityofmenandmonths[21].ResultsfromtheanalyzedcasestudydonotfullysupportBrooks’law.Ahybridestimationmodelisproposedin[20]:themodelavarietyofalgorithmicestimators.Thisapproach,accordingtotheauthor,canbeusedtoallow
DRAFT
exploitsthesystemdynamicssimulatorofsoftwaredevelopmentpresentedin[19],coupledwith
FT6
continuous-timemodeling/estimation.Inparticular,astheprojectprogresses,themodelvariablescanbeadjustedinrealtimetoreflectimprovedknowledgeofthemanagement,whileatprojectcompletion,themodelcanbeusedforpost-mortemanalysis.
In[22]softwaremaintenancemanagementstrategiesimplementedbysomeorganizationsaredescribedandcomparedontheattributesofperformance,economics,efficiencyandend-productquality.Subsequently,somemeasurementsaredefinedforeachattribute.Itisthentheresponsibilityofthemanagertochoose/definethemostsuitablesubsetofattributesthatsupportAnimportantissueaboutanypredictionmodelistheaccuracyofitsestimates.Jorgensen[23]reportsanexperiencefromthedevelopmentanduseofelevensoftwaremaintenanceeffortpredictionmodels.Inthisstudy,themostaccuratepredictionswereobtainedbyapplyingmodelsbasedonmultipleregressionanalysisandonpatternrecognition.
Host[24],publishedastudythatshowshowdiscrete-eventsimulationcanbeusedtoexploreoverloadconditions.Inparticular,asoftwarerequirementsmanagementprocessforpackagedsoftwaresystemswasanalyzed.Thesimulationmodelwascreatedaccordingtoapreviousstudyoftheprocessandthesimulationparameterswereestimatedfrominterviewswithprocessexperts.
his/herownstrategy.
DRAdifferentprocessstrategiesratherthanstaffingthesystem.
October17,2003
TheideaofapplyingqueueingtheorytosoftwaremaintenancewasproposedbyPapapanagio-
takisandBreuerin[25].Theyproposedamodelforthemanagementofsoftwaremaintenancebasedonqueueingnetworks.Themodelaccountedfortechnicalaspectsofthesoftwaremainte-nanceprocess,formetricsobtainedontheapplicationand,finally,fortheorganization’sresourcesandrequirements.Althoughtheydevelopedatooltosimulatethebehaviorofaqueueing-basedprocessandtosupportthemanagement,nodataaboutapplicationtorealprojectswasreported.QueueingtheorywasrecentlyappliedbyRamaswamy[26]tomodelsoftwaremaintenance
requests.Asimilarapproach,tomodelaweb-centricmaintenancecenter,wasdescribedin[5].Byadoptingafastlaneapproach,authorswereabletoimprovemaintenancecenterperformances,
asexperiencedbythemajorityofcustomers.Commonalitiescanbefoundwiththesetwo
works.However,theresearchquestionsaddressedherearedifferent.SimulationsofasoftwaremaintenanceprocesswereperformedbyPodnarandMikacin[27]withthepurposeofevaluatingMostoftheworkdescribedabovedealswiththeproblemofcostandeffortestimation;the
DRAFT
FT7
problemofmeetingtheprojectdeadlineisseldomconsidered.Thelattermayrepresentacriticalissueformassivemaintenanceinterventions,oftenaddressedover-staffingtheproject(andthusincreasingthecosts).Theseissues,withsomeanalysesreportedinthepresentpaper(relatedtothesimplestmodels)wereintroducedin[4].
III.BACKGROUNDNOTIONS
Inthissectionbackgroundnotionsaboutqueueingtheory,queueingnetworksandstatistical
A.Queueingtheorynotions
λ=1/tαC 2αtαDRAtrFig.1.Queueingmodelparameters
Aqueueingsystemcanbedescribedascustomersarrivingforservice,waitingforserviceif
itisnotimmediate,andleavingthesystemafterbeingserved(byservers).Thetermcustomerisusedinageneralsenseanddoesnotnecessarilyimplyahumancustomer(e.g.,maintenancerequestscanbethoughtofascustomers).Aqueueingsystemmodelsthesteadystateoftheparametersare:
process,whiletransientsituationsarenottakenintoaccount.Theobservablequeueingsystem
1)Arrivaltrafficrate:theaveragerateofcustomersenteringthequeueingsystem,
theinterarrivaltime
),and,ifavailable,itsstatisticaldistribution;
2)Servicetime:thetimeaserverneedstoprocessarequest,distribution;
October17,2003
FTSERVERStsCs2simulationswillbesummarized.Furtherdetailscanbefoundin[3].
QUEUEtsCs2tsCs2twts(and/or
,and,ifavailable,itsstatistical
DRAFT
8
3)Queuecapacity:finiteorinfinite;and
4)Queuediscipline:FIFO,LIFO,random,withpriority,etc.
WithreferencetoFig.1,aqueuebookkeepingmayregisterthedistributionandtheaveragevaluesofwaitingtimes(),thetimesspentbycustomersinthesystem,(alsocalledresponse
times-
)and,finally,theaveragenumberanddistributionofcustomersinthesystemandin
thequeue.
Asashorthandfordescribingqueueingphenomena,anotationhasbeendefined;aqueueingarrivaltimedistribution,
istheservicetimedistribution,
capacityofqueue(infiniteifomitted),and
and
maybeMarkoviandistributions(
butions(
),orgeneraldistributions().TheErlangdistributionisaGammadistributionwith
positiveintegerparameter,anditbecomesanexponentialdistributionifisthenumberofstagescomposingtheErlangprocess.
FTsystemisdescribedbyaseriesofsymbolsandslashes
,where
istheinter-isthenumberofservers,isthe
isthequeuediscipline(FIFOifomitted).
),deterministicdistributions(),Erlangdistri-[3],where
Often,a-prioristatisticalknowledgeoftheprocessislimited;theselectionofinter-arrivalandservicetimedistributionfamiliesmaybeguidedbythesquareofthecoefficientofvariation
DRA,definedastheratioofthestandarddeviationtothemean.Availableliterature[3]suggests
anassumptionofdeterministicdistributionwhen
,anErlangdistributionwhen
,andanexponentialdistributionwhen
.Valuesof
requirea
generaldistribution.Notethat,if
,anexponentialdistributionmaybeapplied,givingrisetoanoverly
conservativeestimate.Thecasewhere1modelsclusterarrivals,suchastrainarrivals.
Goodness-of-fittestsarerequiredtosupportandvalidatetheassumptionsaboutthechosendistributionfamily.
Tomeasurequeueingsystemperformance,severalparametersmaybeconsidered;forexample,
theaveragetimespentbyacustomerwaitingforaserver(i.e.,
),theaveragequeuelength,the
averagenumberofbusyservers,theserverusecoefficient(i.e.,,seebelow),ortheprobability
thatallserversarebusy.Theserverusecoefficientisrelatedtothesystemstatistical
equilibrium:
October17,2003DRAFT
9
FT(3)
where
isthewaitingtimeaspredictedbythe
modeland
isthesquareof
DRAthecoefficientofvariationofservicetimes.B.QueueingNetworksmodel)isoftenfeasible.
statesthatinanetwork,composedof
Fig.1representsaqueueingmodelataveryhighlevelofabstraction:incomingrequests
areenqueuedandprocessedbyoneormoreservers.Morecomplexmodels,basedonqueueingQueueingnetworkanalysisiscomplexand,inmostcases(especiallywhenservicetimesare
networks[3],arerequiredtoobtaindetailedinformationondifferentprocessphases.
notexponentiallydistributedandthemodelisnottrivial),itrequiresasimulation.However,apreliminaryconservativeanalysisassumingexponentialdistributions(forallthenodesoftheQueueingnetworkparametersaredeterminedbyapplyingJackson’stheorem[3].Thetheorem
nodes,eachonecharacterizedbyparameters
(number
ofservers),(averageservicetime,exponentiallydistributed),and
(incomingarrivalrate,
October17,2003DRAFT
10
Requests exiting from the systemwRequests incoming from outside the system1− ΣpkjΛj=lkλkNk....plkΛlpklΛkRequests dispatchedto other nodes...pwkΛRequests incomingfrom other nodespkwΛwkFig.2.Queueingnetworknode
seeFig.2),arequestmayflowtonodethesystemwithprobability:
FT(
)withprobability
,ormayexitfrom
(4)
Thismeansthat,forthe
node,thetotalarrivalrateis
DRA(5)
Therefore,onceassigned
(trafficincomingfromoutsidethesystem),andtransitionprob-
abilities
,
canbedeterminedbysolvingasystemoflinearequations.Itisworthnoting
thattheJackson’stheoremappliesonlyifthesystemisatstatisticalequilibrium:evenif,duetothetaskperformedortodifferentteams’expertise,differentserversmayexhibitdifferent
performances,thenumberofserversischosentoensureflowbalance:theexitrateofanodeis
equaltoitsincomingrate.C.Simulation
Aspreviouslystated,aqueueingsystemonlymodelsthesteadystate.Therefore,toanalyze
transientanddynamicbehavior,asimulationisrequired.Simulationmodelsnon-stationaryrules(e.g.,reworks,routingproblems,etc.).
October17,2003
processes(orprocessesnotfollowingaknowndistribution),aswellascomplexdynamicsand
DRAFT
11
Simulationattemptstobuildamodelthatwillmimicarealsystemformostofitsrelevantaspects.Asimulationmaybedeterministicorstochastic.Inthefirstcase,thebehavioris“point-wise”definedbytheoutputofthemodel(apointestimateismadeforeachofthevariablesofinterest)andresultsarerepeatable.Stochasticsimulationinvolvesrandomness:multiplerunsmaygeneratedifferentvalues.Moreover,asimulationmaybestaticordynamic,dependinguponwhetherornotitinvolvestime.
Finally,simulationmaybeclassifiedassystemdynamicssimulation,discrete-eventsimula-describetheinteractionbetweenseveralprojectfactors,torepresentsituationssuchasfeedbackloops,etc.Discrete-eventsimulationdescribesprocesssteps,andiswellsuitedtomodelqueueingsystemssuchasthosedescribedinthispaper.Stochasticstate-basedsimulationmodelsexplicitlycaptureprocess-leveldetails,includingcomplexinterdependenciesamongprocesscomponents.Discrete-eventsimulationmaybeapproachedinthreedifferentways[29]:
Eventscheduling:theideaistomovealongthetimescaleuntilaneventoccursandthen,dependingonthenatureoftheevent(arrivalofarequest,finishingofaprocessphase,etc.),modifythesystemstate,andpossiblyschedulenewevents;
DRAActivityscanning:astimepasses,theactivitiesarecontinuouslymonitored,forthesatis-
factionofaparticularactivity,namedaconditionalactivity[29].SuchanactivityoccursProcess-oriented:thequeueingsimulatorprovidesthreeessentialcomponents:asourcethatgeneratescustomerarrivals,aqueuetoholdwaitingcustomers,andafacilitytoservecustomers.Onceprocess-orientedcomponentsareavailableasbuildingblocks,themodelerneedonlyprovideprocessparameters.
whentherearerequestsinqueueandatleastoneserverisidle;or
Thispaperaddressestheanalysisofthedynamicbehaviorofqueueingnetworksviastochastic,
dynamic,discrete-eventsimulations.Thesimulatorhasbeenimplemented(seeSectionV-E)
adoptingaprocess-orientedapproach.Thechoiceofthisapproachwasmotivatedbydesignconsiderations,i.e.,wedecidedtocreatealibraryofclassesrepresentingthebasicbuildingblocksofthequeueingsystem.
October17,2003
FTtion[15],[16]andstate-basedsimulation[28].Systemdynamicssimulationiswell-suitedto
DRAFT
12
IV.THEMODEL
Tomodelamaintenanceprocessusingqueues,differentlevelsofabstraction,correspondingtodifferentgranularityandapproximationlevelscanbeconsidered:
Inthesimplestmodel(Fig.1),maintenanceactivitiesandcentersarenotdistinguished;asinglequeue(i.e.,node)modelsthesystem;
Atafinerlevelofdetail,differentmaintenancephasesaremodeledbydifferentnodes,assigningresources(i.e.,servers)toeachmodeledactivity(Fig.3-a);
(Fig.3-b);and
Finally,thepossibilityofreworkamongdifferentmaintenancephasesisconsidered(Fig.3-c).
Thesingle-queuemodelmayberegardedasthecustomerview:requestsenterthesystemand,eventually,amaintenanceactivityisbilled;suchacoarse-grainedviewmaybeextremelyusefultoeasilyassesstheoverallprobabilityofsuccesswithatractablemathematicalmodel.However,formorecomplextopologies,stochasticsimulationisneeded.
Fig.3-ashowsahighlevelviewofamulti-center,multi-stagemaintenanceprocess,modeled
DRAof
byacascadeofqueues.Eachstagemayinvolveseveralmaintenancecenterswithdifferent
requestsperday,andareprocessedsequentially(i.e.,FIFO)byoneormorenodes2.Each
numbersofassignedprogrammers.Maintenancerequestsenterthesystemwithaconstantrate
node,composedofaqueueandoneormoreservers,representsaphaseofthewholemaintenanceprocess.Thereisnolimitationonthegeographicallocalizationoftheserversinthatthemodelabstractsunnecessarydetails.Communicationandcoordinationactivitiesareaccountedforbytheestimatedmodelparameters.Thiscorrespondstothesoftwaremaintenancecompanyinternalview:requestsenterthesystem,undergoasequenceofactivities,andfinallyleavethesystem.Fig.3-bshowsamodelwherearequestmayexitafteracertainnodeofthe“chain”.Consider,
forexample,acomplexsystem:theremayexistcomponentsthatdonotneedanymaintenancemodification.
2
interventions.Thus,afterthecomponentshavebeenanalyzed,theyleavethesystemwithout
Ifthearrivalrate
isnotconstant,simulationisnecessarytostudysystembehavior.
DRAFT
October17,2003
FTThepossibilitythatarequestmayleavethesystemafteracertainphaseistakenintoaccount
13
Stage 1λλStage 2λStage nλts1C2s1ts2C2s2a)tsnC2snStage 1λλp1,2Stage n−1n−2Stage nλpΠj=1j,j+1n−2ts1Cs12λ(1−p )1,2Stage 1λDRAts1Cs12Fig.3.a)Queueingmodelofamultistage,multicentermaintenanceprocess;b)Modelwithexitfromthesystem;c)Model
withrework
Finally,Fig.3-cshowsanexampleofasysteminwhichthereisthepossibilityofrework:
somephasesmaybeperformedmorethanonce.Inamaintenanceprocess,forexample,after
unittesting,onemayrealizethatitisnecessarytore-modifythecode.Inthiscase,requeststhatenterintoeachnodemayarrivefromthepreviousnode(orfromoutsidethesystemforthefirstnode)orfromoneofthesubsequentnodes.Arrivalrates,asstatedinSectionIII-BandalsoshowninFig.2,havebeencomputedusingtheJackson’stheorem.Forsakeofsimplicity,formulaehavebeenomittedinFig.3-c.
October17,2003
FTtsn−1Csn−12λpΠj=1j,j+1tsnCsn2pλ (1− )j,j+1n−2Πj=1b)Stage 2Stage nts2Cs22tsnCsn2c)DRAFT
14
Maintenancecentersmaybedescribedbyacombinationof
models.However,while
theoreticalas-inthecasestudyreportedhere,requestinter-arrivaltimesmaybedescribedbyexponentialprobabilitydistribution,servicetimessometimesgrosslydeviatefrom
sumptions.Inotherwords,when
,the
modelwasreplacedbyan.
In
,thegeneraldistribution
accountsfortheincreaseinwaitingtimesduetohigher
servicetimevariability.
V.CASESTUDY
Thecasestudyreportedhereisamassivemaintenanceproject,relatedtofixingtheY2KprobleminalargefinancialsoftwaresystemofaEuropeanbusinessfirm.TheprojectstartedonJanuary2,1999andfinished(formally)onJanuary14,2000.ThecontractrequiredthatallmaintenanceactivitieswerecompletedbyDecember1999.levels:
Theproject,managedandcoordinatedbyaProductionManager,wasorganizedintothree
Area:anaggregationofoneormoreapplications,managedbyanAreaManager;
Application:asetoffunctionsrelatedtoaparticularpartofthebusiness,managedbyanApplicationLeader;eachapplicationiscomposedofoneormoreWorkPackets(WPs);(WPs):looselycoupled,elementaryunits(fromonetonineforeachapplication)subjecttomaintenanceactivities;eacharrivingWPwasmanagedbyaWPleaderandassignedtoamaintenanceteam(theaverageteamsizewasaboutfourprogrammers).
DRAThesystemwascomposedof84WPs,eachonecomposed,onaverage,of300COBOLand
JCLfiles.TheseWPswereproducedbytheInventoryphase(seebelow)fromJanuarytotheend
ofJuly,andallmaintenancedirectlyrelatedactivitiesforthoseWPsendedinOctober.AboutinthemaintenanceoftheseWPs.AsdetailedinSectionV-C,oneofthecaseobjectivesistotheprojectwithintheestablisheddeadline.
80people(i.e.,maintainers,managers,techniciansandsecretaries)wereinvolved(notfull-time)determinethenumberofpeoplethat,workingfull-time,wouldallowsuccessfulcompletionofTheprojectfollowedaphasedmaintenanceprocess(similartowhatdefinedin[30]),defined
insidethemaintenanceorganization,encompassingfivemacro-phases:
1)Inventory:dealswiththedecompositionoftheapplicationportfoliointoindependentapplications,andsuccessivedecompositionofeachapplicationintoWPs.Theactivitywas
DRAFT
October17,2003
FT15
performedinconjunctionwithdomainandapplicationexperts.ConsistencychecksensuredthatalltherequiredcomponentswereincludedineachWP.Forsuchalargeproject,theidentificationofWPsproceededincrementally,whileprocessingalreadyidentifiedWPs:thiscreated,asstatedinSectionVI-A,aPoissonprocessofincomingmaintenancerequests.Finally,duringtheInventoryphase,managerscarriedoutearlyeffortestimationandpreliminaryprojectstaffing.Theseactivitieswereperformedbyapplyinganalogy-basedeffortestimation[31],usinginformationgatheredduringtheassessmentphaseonEuroprojects.
about50%ofthe(previouslyarrived)WPs,andondataavailablefromsimilarY2Kand2)Assessment:identifies,foreachWP,candidateimpacteditems,usingautomatictools.Typically,astartingimpactsetisidentified(i.e.,programpointsdirectlyimpacted),andthenitisaugmentedbythesetofpointsimpactedbyrippleeffects[32];
3)TechnicalAnalysis(TA):dealswiththeanalysisofimpacteditemsandidentifiesacan-didatesolutionamongasetofpre-definedsolutionpatterns.Theidentifiedsolutionwasdocumentedbyaddingastandard-formatcommenttotheitem;
4)Enactment(Enact):anautomatictoolwasusedtoapplypatchestotheproblemsidentified
DRAtemplate.
October17,2003
andanalyzedinthepreviousphases.Thesolutionwasoftenbasedonwindowing[33];
5)UnitTesting(UT)wasperformedoneachimpactedWP;toolswereusedforautomaticgenerationoftestcases.Testingwaslimited,intheabsenceofrippleeffects,tothecodeisolationtesting,reducestestingcosts,inthatdriverscanbeconstructedfromapre-definedsurroundingtheimpactedpoint(extractedusingprogramslicing):thistechnique,called
Thefirsttwophaseswereperformedonthecustomersitesbyadedicatedteamofsenior
programmers.Theteamresponsibilitiesincludedinventory,assessment,workloaddispatchingandtofourdifferentsites.Thephasesdescribedabovewerefollowedbyintegrationanddeliveryrelatedactivities,whichwerenotsubjectofourcasestudy.InordertointegrateanddeliverthetheendofOctober.Conflictresolutionandschedulingwereundercontroloftheteammanager,systemwithinthecontractualdeadlines,itwasrequiredthatallWPsunderwentmaintenancebywhiletheApplicationLeaderhandleddependenciesamongfiles.Becausetheinventorywas
conflictresolution;alltheremainingactivitieswerecarriedoutbymaintenanceteamsassigned
FTDRAFT
16
preliminaryperformedoff-linewithrespecttotheproject,thatactivitywasnotincludedinthemodeledmaintenanceprocess.A.Assumptions
ThissectionsummarizesalltheassumptionsmadetomodelthesoftwaremaintenanceprojectdescribedaboveusingthequeueingmodelsdetailedinSectionIV.
AsstatedinSectionV-B,thispaperassumesrequestsgeneratedbyaPoissonstochasticprocess(assumptionsupportedbytestsdetailedinSectionV-D.1),anunlimitedqueuesizeandaFIFOqueuediscipline.However,differentsoftwaremaintenanceprojectsmayormaynotfollowtheaboveassumptions:theremaybebatcharrivals,ordifferentmaintenancerequestsmayhavedifferentpriorities.Detailsonhowqueueingmodelsaddressthesefactorsarebeyondthescopeofthispaper,andcanbefoundin[3].Limited-capacityqueueswerenotconsideredbecause,intheorganizationsubjectofourcasestudy,therewerenocasesinwhicharequestwasnotaccepted(andsentbacktothecustomerortothepreviousnode)becausethequeuewasfull.Aspreviouslyhighlighted,themaintenanceinterventionswerecarriedoutbyapplyingastandardizedprocedure;inmostcasesproblemidentification,patchapplicationandunittestingweresupportedbyautomatictools.Thefollowingassumptionweremade:
NoparticularprioritywasrequestedforanyWP.Theproject(excepttheintegrationandsystemtestingphases,notconsideredinourcasestudy)dealtwiththeapplicationodpatchestoCOBOLandJCLsourcesaffectedbytheY2Kproblem:integrationwasperformedonlyattheendoftheproject;
Becausetheinterventionwashighlystandardized,differentprogrammerskillsandexpe-riencesplayedlittle(orno)role.Themaintenanceprocesswasconsideredasapoolofincomingrequestsenqueuedanddispatchedtothefirstavailablemaintenanceteam,therebyjustifyingtheFIFOqueueingdiscipline;
Forthesamereason,andfollowingin[18],Brooks’lawwillbeassumednotapplyinthecasestudy.Itwas,infact,assumedthatinterchangeabilitybetweenmenandmonthsispossible,hence:
17
approximationwasconsideredreasonable.Furthermore,themodelcanbegeneralizedtocasesforwhichtheBrooks’lawdoesapply,e.g.,introducinganon-linearityfactorin(6).B.InstantiatedModels
All PhasesAssessmentTechnical Analysis/Enactment/Unit Testinga)b)AssessmentFig.4.Queueingnetworkmodelsinstantiatedinthecasestudy
ModelsdescribedinFig.3wereinstantiatedaccordingtotheadoptedmaintenanceprocess.
DRAInparticular,threedifferentmodelswereappliedtotheprocess:
Asingle-queuesystem(Fig.4-a);
Asystemcomposedofatandemoftwoqueues(Fig.4-b),onefortheAssessmentphaseandanotherforallotherphases(thismodeltakesintoaccountthegeographicaldistributionoftheproject);and
Asystemcomposedofthreenodes(Fig.4-c),oneforAssessment,oneforTechnicalAnalysisandanotherforEnactmentandUnitTesting.ItisworthnotingthatnotalltheonEnactmentandUnitTesting.
requestsgobeyondtheTechnicalAnalysisphase,andtheremaybeapercentageofrework
Thoughprojectdatarevealedanegligiblelevelofrework,investigationontheeffectsofdifferent
reworklevelsispresentedinSectionVI-C.C.ResearchQuestions
Queueingsystembasicparameterscanbeeitherestimatedbyanalogyonpastprojectsor
derivedfromthelogofanongoingactivity.However,astimepasses,availableinformation
DRAFT
October17,2003
FTReworkTechnical AnalysisEnactment/Unit TestingAbandonc)18
increases,andrefinedestimatescanbeobtained.Inotherwords,theresearchquestionsaddressedinthispaperaretosomeextenttimedependent,anddifferentmilestoneswereestablishedtotrackprojectevolution.Thefollowingresearchquestionswereinvestigated:
1)Howcanthecollectedinformationonongoingactivitiesbeusedtoreadjustprojectstaffing?(SectionsV-D.1andV-D.2,seeresultsinTableIV)2)Foragivenstaffinglevel,howaccuratearethe
estimatesobtainedbydifferentmodels,
e.g.,singlenodemodelcomparedtoasystemexplicitlymodelingthedifferentphases?3)Howdoesthelikelihoodofmeetingtheprojectdeadlinechangeastheprojectprogresses?(SectionV-D.3,resultsareplottedinFig.9)
4)Howdoreworkandabandonmentaffecttheresults?(ReworkeffectsareshowninSec-tionVI-C,whileabandonmenteffectsareshown,forthethree-queuemodels,inTableIVanddiscussedinSectionVI-B)And,finallyinSectionVI-E)D.TheMethod
5)Mayaperiodicrestaffingreducepersonnelcosts?(SectionsV-D.5,resultsarediscussed
DRAwereusedtotrainthemodelwhiletheremainingtoassessmodelaccuracy.
Anapproachinspiredbytheleave-one-outcross-validationprocedure[34]andbytimeseries
(past)points,thetrainingset,
analysis[35]wasusedtomeasuremodelperformances.Collecteddatapointswereconsideredasatimeserieswithapast,apresentandafuture.Thefirst
(future)points,thetestset,wereused
AssketchedinFig.5,eachcheckwasarticulatedinthefollowingsteps:1)Datadistributionanalysisandmodelparametersestimation;2)Projectstaffing;
3)Likelihoodofmeetingtheprojectdeadlineestimation;and
4)Testsetmodelassessment.
Inaddition,simulationwasperformed(seeSectionV-D.5)toanalyzethebehaviorofthemodel1)DataDistributionAnalysisandEstimationofModelParameters:Inordertoverifythatcase
incaseofperiodicalre-staffing.
studydata(interarrivaltimesandservicetimes)followastatisticalpattern,twotaskswerecarried
October17,2003
DRAFT
FT(SectionV-D.2,resultsareshowninFig.6-b,7and8)
19
Model ParametersContractualDeadlineModel ParametersRequiredwaiting timesEstimatedStaffingPARAMETERSESTIMATIONPassedDATADISTRIBUTIONANALYSISPROJECTSTAFFINGLIKELIHOODESTIMATIONLikelihoodof FinishingInformationFailedElapsedFinishingDeadlineEstimatedResponse timesand accuracyMODELASSESSMENTTEST SETDATAAccuracy ofDeadlineEstimationENDTRAINING SETDATAFig.5.Informationflowamongthemethod’ssteps
out.First,histogramsofthedatawereplottedandtheirshapesanalyzedtoselectacandidatedistribution.Then,theKolmogorov-Smirnov(KS)goodness-of-fittest[36]andtheChi-squaregoodness-of-fittest[37]wereperformed,toassessthesimilarityofthedatadistributionwiththecandidatedistribution.andthedistributionfunction
TheKStestcomputesthelargestdistance
DRAthatthedatafittheexpecteddistribution)isrejectedif
KStestvalues,aretabulated[36]).
TheChi-squaredtestmeasurestheerrorbetweenacandidatedistribution’sdensityfunction
,where
andthedatahistogram.Thetest(i.e.,thesamenullhypothesisastheKStest)isrejectedif
istheChi-squaredstatisticand
functionwith
degreesoffreedomandsignificancelevel.
Toselectthefamilyofdistributions,testsontheinterarrivaltimedistributionandontheservice
modeldoesnotrequireanyhypothesisonservicetimedistribution.
timedistributionswereperformed,forthedifferentnodesofthequeueingsystem.Itisworthnotingthatthe
Onceithasbeenverifiedthattheincomingdatafollowawell-knownstatisticalpattern,the
interarrivalratewasestimatedusingtheMaximumLikelihoodEstimator(MLE).Itcanbe
shownthat,forexponentialdistributions,theMLEisequaltothearithmeticmean.Servicetime
descriptivestatistics(meanandstandarddeviation)werecomputedoveratrainingset:according
October17,2003
FTbetweenacandidatedistributionfunction
(
computedfromthedata.Thetest(i.e.,thenullhypothesis
values,saidcritical
istheChi-squaredpercent-point
DRAFT
20
to[3],noparticularestimatorwasneededinthiscase.
2)Projectstaffing:Onceparameterswereestimated,stochasticsimulationwasusedtocomputeteamsizes(forthedifferentnodesofeachmodel)undertheconstrainttocompletemaintenanceactivities,onaverage,withinagivendate.Severalsimulationswerecarriedoutwithincreasingteamsizeforeachnodeofthemodel,untilalltheexpectedWPswereprocessedbythechosendeadline.Thenumberofservers(maintenanceteams3foreachnode),waschosensufficientlyhightoensurethataddingfurtherresourcesdidnotsubstantiallymodifythesimulatedprojectlife-span.
Projectstaffinglevelsarethenrefinedtoreachacompromisebetweenpersonnelcostandwaitingtime.Ifthenumberofteamspernode(servers)istoosmallthenthismayproducesysteminstability(therequestarrivalrateisgreaterthanrequestdispatchrate),whileincreasingthenumberofteamsincreasestheprojectcost.
Responsetimesevaluatedfromtrainingsetparameterswerecomparedwiththoseevaluatedfromthesamemodel,with
andservicetimesofthetestset,tomeasuretheerroroccurred
estimatingtheresponsetimes.
3)LikelihoodtomeettheProjectDeadlineEstimation:Theprojectstaffinglevelcannotbeconsideredwithouttakingintoaccounttherisksrelatedtoanexcessiveslacktimeandtherelatedcontractualpenalties.Themassivemaintenanceprojectwasdevotedtomodifymission/businesscriticalsoftware:remediationcostswerenotconsideredtheprincipalissue.
Thelikelihoodofmeetingtheprojectdeadlinewasestimatedbynumericalstochasticsim-ulationbasedontherefinedstaffinglevel(inthatitguaranteessmallresponsetimesandthestatisticalequilibriumofthesystem).Fortheexpectedworkloadandanygivenpossibleprojecttime-to-finish,inarangeofinterestaroundtherequiredprojectdeadline,iterativesimulations(thenumberofsimulationswasdoubledeachtime,untiltheresultsfortwosuccessiveiterationsmatched)wereperformedtocomputethelikelihoodastheratio:
21
actualarrivaldatesandservicetimes(testset).Inotherwords,adeterministicsimulationwasexecutedwithWPsbelongingtothetestset.
5)AnalysisofTransientandAdaptiveRestaffing:Themaindrawbackoftheprocessdescribedaboveisthatthestaffinglevelisconstantacrosstheentireproject,therefore:
Projectinitialandfinaltransientsarenothandled:althoughatthebeginningandattheendoftheproject,thenumberofWPstoprocessconcurrentlyisconsiderablylower,thestaffinglevelconsideredisthesameofthesteadystate;and
projectwhenevertherateofarrivalsandtheaverageservicetimesexceedcertainthresholds.Tostudytheeffectofperiodicalrestaffing,newsimulationswereperformedasfollows:
1)OnceasmallnumberofWPs(say10),necessaryforapreliminaryestimateofmodelparametersarrived,theprojectwasstaffedtomeetthedeadline.Inparticular,givena
deadline,theaveragefinishingdateofthesimulation,andanacceptabledelay(positive
ornegative),asimulationisconsideredsuccessfulif
FTThepossibilityofan“adaptivestaffing”isnotconsidered.Itmaybeusefultorestaffthe
(7)
DRAInthecasestudyreportedhere,thedelayweeks.E.ToolSupport
1)Aqueueingsystemsimulator;and
2)Atoolforcomputingqueueingtheoryparameters.
October17,2003
2)Periodically(sayevery10days),parametersarere-estimatedondatacollectedfromarrivedWPs,simulationwasexecuted,andprojectstaffingaccordinglymodified(ifneeded).
waschosenequalto10days,correspondingtotwo
Totrainqueueingmodels(i.e.,toestimatemodelparameters),tosimulatesystemevolutions
andcomputethelikelihoodpresentedinSectionVI,twodifferenttoolswereused:
Thequeueingsystemsimulatorwasdevelopedtosupportthedeterminationoftheteamsize
requiredtocompletetheprojectwithinagivendeadline.Inthemeantime,thelikelihoodofmeetingthedeadlineisobtained.Thesoftwareallowstheexecutionofbothdeterministicandstochasticsimulations.Inthelattercase,interarrivaltimesandservicetimesarerandomly
DRAFT
22
generated,andthesimulationisiteratedforasufficientlyhighnumberoftimessothatresultsobtaineddonotsignificantlyvarybetweenexperiments.Fordeterministicsimulations,interarrivaltimesandservicetimesarereadfromfiles.
ThequeueingsystemsimulatorconsistsofalibraryofC++classes,implementingobjectsofaqueueingsystem:
Sourcesofservicerequests:AnASCIIdatafile(usedfordeterministicsimulations:requestsarereadfromafile,containingthearrivaldatesoftherequests)orrandomsourcesQueueingnodes:composedofaqueueandoneormoreservers,thatserverequests
enqueuedfromasource.Servicetimesmaybebothreadfromafileorrandomlyproducedwithanexponentialdistribution(ifthedistributionofservicetimesisgeneral,thenthePollaczek-Khintchineformulaisusedtoapproximateresponsetimes);and
Dispatchers:usedforqueueingnetworks,thissystemrandomlydecides(givenatransitionprobabilitymatrix)towhichnodesarequestgoes.
Thequeueing-theoryparameterscomputingtoolisaPerlscriptthat,givenasetofparameters
,,
andnumberofservers
,computesthequeueingmodelrelevantparametersintroduced
,thatindicatestheprobability
DRAarequesthastomovefromnode
inSectionIII(e.g.,waitingtime,serverusecoefficient,probabilitythatallserversarebusy,etc.).
Moreover,italsohandlesqueueingnetworks,giventhematrixof
tonode.
VI.CASESTUDYRESULTS
ThemethoddescribedinSectionV-Dhasbeenappliedtotheempiricaldataobtainedby
monitoringtheprojectdescribedinSectionV.Datawereinitiallyscrutinizedwithaseniormanagertoassessdataqualityandtoavoidduplication.Theprojectplan,assignedbythecustomer,wasassumedastimereferenceforanyfurtheractivity.Accordingtotheproject
milestones,atargetfinishingdatewasfixedattheendofSeptember.Thisallowedtominimize
therisksoffinishingaftertheestablisheddeadline,i.e.,theendofOctober.
Theexperimentsdescribedinthissectionwereperformedasfollows:
1)Theentiredataset(composedofarrivaldateandeffortforall84WPs)wassplit,atdifferentdates,intoatrainingset(WPsarrivedbeforetheconsidereddate)andatestset
DRAFT
October17,2003
FT(usedforstochasticsimulations:requestsareproducedwithanexponentialdistribution);
23
DateSet
Distribution
KSTest
Chi-SquareTest
Passed
26.51
14.97
No
27.33
6.83
Yes
15.38
16.14
Yes
26.51
12.14
No
27.33
8.37
Yes
15.38
YesYesYesYes
Trainingset
0.19
(overall)
0.69
Yes
0.200.20
(TA)
0.19
(TA+Enact+UT)
0.20
0.20
0.20
0.58
0.20
Testset
(overall)(TA)
(TA+Enact+UT)
KS-TESTANDCHI-SQUARETESTRESULTS
(WPsarrivedafterthatdate).
2)Then,themodelwasbuiltusingtheparametersestimatedfromthetrainingset,and
DRAOctober17,2003
assessedusingthetestsetdata.Inparticular,thethreeprojectmilestones(endofMarch,i.e.,threepairsoftrainingsetandtestsetwereconsidered.Ontheavailabledataset,fixingarestaffingmilestoneattheendofMarchdidnotallowefficientprojectrestaffing;itwastooearlyanddataavailablerepresentedonlytheinitialtransient,ratherthentheprojectitself,theyrepresentedtheinitialtransient.Similarly,restaffingattheendofMayproducesoverstaffingbecauseofthefinaltransient.Asreportedin[4],arestaffingperformedtoo
endofAprilandendofMay)wereconsideredasreferencepointsforsplittingthedataset:
earlyortoolatealsoproducedapoorresponsetimeestimate.AgoodsolutionwouldbefixingamilestoneafterhalfoftheWPswerereceived(i.e.,attheendofApril).Thisdatecorrespondstotheprojectmid-termthat,accordingtothecompanyqualityguidelines,correspondstotheidealprojectmilestonetocheckproject-scheduleand/orperformrestaffing.Fromthispoint,the42WPsthatarrivedfromJanuarytoAprilwillbereferredtoasthetrainingset,andtheremaining42,arrivedfromMaytoJuly,astestset.periodicallyestimated,andanewstaffingwasdeterminedaccordingtothetargetdate.
DRAFT
3)Inadifferentapproach,asdescribedattheendofthissection,themodelparameterswere
FT0.32
No
0.20
14.41
Yes
TABLEI
24
Parameter
Singlequeue
Tandemqueue
TA+Enact+UT
420.0761.38400.611.16
420.0761.38389.931.20
Queuewithexit
TA420.0761.38263.90.91
25
Model
20Sept22Sept
TA+Enact+UT
Threequeuesnetwork
Assessment
3
Enact+UT
31
26
(
predictionerrorsbelow10%,see[4]).
120
9080
100
70
80
6050403020
20
10
0
0
tw [h]60
40
Servers (Assessment)
Fig.7.Queueseries:estimatedwaitingtimes
Fig.7,comparedwithFig.6,alsohighlightsthat,ontheavailabledata,aseparateassessmentteamdoesnotamelioratetheoverall
phase)withacorresponding
andthenumberofservers
centerperformingTechnicalAnalysis,EnactmentandUnitTesting,asinglemaintenancecenter(responsiblefortheentireprocess)with
FTServers (TA+Enact+UT)
123
tw [h]1112131415
.Infact,oncefixedthenumberofservers
(assessment
,with
,fortheservice
.
maintainersobtains
DRAdifferentphases.Fig.8reportsthetotal
Thefactisnotsurprising;assessmentteamshavealowutilizationcoefficients,thismeansthathavingexplicitresources(choicemadebecauseofthedifferentexpertiseneeded)devotedtoThethirdmodelanalyzedcomprisesthreedifferentnodes:oneforAssessment,onefor
assessmentpreventsthefullresourceutilizationwithintheproject.
TechnicalAnalysis,andoneforEnactmentandUnitTesting.Furthermore,themodelaccounts
forthefactthatnotallrequestsneedstheEnactment/UnitTesting(inparticular,asshown64%).Afterperforming(similarlytothepreviousmodels)analysisof
inTableII,thepercentageofWPsfromthetrainingsetrequiringEnactment/UnitTestingis
and
errorgraphs,
thecompromiseconfigurationwaschosenconsideringthebestcombinationofstaffingforthe
(consideredasthesumofwaitingtimesforthethreedifferentnodes,
takingintoaccountthefactthatonlyacertainpercentageofrequestsarriveatthefinalnode)and
thepercentageerrorsfor
,varyingwithdifferentservercombinations.Itisworthnotinghow,
forexample,47differentmaintainersmaybeassignedtodifferentphases,aconfigurationof
3-10-7(Assessment-TechnicalAnalysis-Enactment+UnitTesting)performsbetterthana2-9-9.
October17,2003
DRAFT
27
ThisisnotsurprisingsinceapercentageoftherequestsdonotrequireEnactmentandUnitTesting.Eveninthiscaseareasonablecompromisebetweencostandperformanceoccursnearthekneeofthecurves.ThefiguresuggestsaconfigurationofthreeserversforAssessment,9forTechnicalAnalysisand8forEnactmentandUnitTesting.
10095908580tw [h]7570656055
2-10-7 (46)3-10-7 (47)2-10-8 (48)3-10-8 (49)2-10-9 (50)3-10-9 (51)502-9-7 (43)3-9-7 (44)2-9-8 (45)3-9-8 (46)02-9-7 (43)3-9-7 (44)2-9-8 (45)3-9-8 (46)206080100
tr Error (%)40
2-10-7 (46)3-10-7 (47)2-10-8 (48)3-10-8 (49)2-10-9 (50)# of servers for each phase (Total # of persons involved)
# of servers for each phase (Total # of persons involved)
Fig.8.Threenodesnetwork:overallestimatedwaitingtimesanderrorsonresponsetimesforsomecombinationsofservers
Model
AllphasesAssessment
Teamsize
[h]
20Sept130
15452
3
Totalstaffing:
Threequeuesnetwork
TA
2
Totalstaffing:
1
9
98.0810.72
3-10-9 (51)2-9-9 (47)3-9-9 (48)2-9-9 (47)3-9-9 (48)28
estimatethelikelihoodofendingtheprojectonacertaindatewerecarriedoutforthethreemodels,withthetotalnumberofprogrammersinvolvedrangingfrom44to46.Fig.9-ashowstheresultsfordifferentdates,rangingfromSeptember30ththroughtoDecember15th.
100
10095
9090
80Likelihood (%)Likelihood (%)85
80
7075
70
65
Single QueueQueue SeriesThree Nodes
60
sep-30
oct-15
oct-31nov-15Estimated Deadline
a)
Fig.9.a)Likelihoodoffinishingmaintenancewithinacertaindate-b)Impactofrework
C.AnalysisofDelaysduetoRework
DRAD.ModelAssessment
October17,2003
Althoughdatacollectedfromthepresentcasestudyrevealedanegligiblelevelofrework,itis
interestingtoinvestigatehowreworkcouldaffecttheprojectcompletiondateandthelikelihood
ofmeetingthedeadline.SimulationwasthereforeperformedassumingthatacertainpercentageofWPswererandomlysubjecttoreworkfortheEnact-UTphase.Itwasassumedthatthedistributionwasthesame.Itisworthnotingthat,ifarequestwaspreviouslysubjecttorework,offinishingwithinacertaindeadlineasfunctionofthepercentageofrework.
reworkeffortwasindependentfromtheeffortpreviouslyspentforEnact-UT,eventhoughtheitwouldstillhavethesameprobabilityofbeingreworkedagain.Fig.9-breportsthelikelihood
Asafinalstep,thetestsetdatawereseededintothemodelstaffedaccordingtoTableIV,
simulatingthebehaviorontheactualdata.Results,reportedinTableV,showthatforboth
thesinglequeuemodelandqueueseriesmodels,theactualfinishingdateisveryclosetotheestimateddeadline(September30th).Inthethreequeuesnetwork,theerroroccurringinthe
DRAFT
FT6050nov-30
dec-15
sep-30oct-15oct-31nov-15Estimated Deadline
nov-30b)
0%5%10%15%20%25%dec-1529
estimationwashigher.However,ashighlightedfromFig.9-a,astimeadvances,thelikelihoodoffinishingwithathree-queuesmodelisalwayshigherthanthoseofothermodels.
Model
FinishingDate
Singlequeue
Sep-22
Threequeuesnetwork
Oct-7Sep-28
6.54%
Actual
%estimation
30
Similarly,attheendoftheprojectthenumberofpendingrequestsdecreasedsothatasmallernumberofserverssufficed.Afewdaysbeforethedeadline,onlyoneWPremainedand,asshowninthefigure,asingleserverforeachphasewasrequired;and
Finally,therearecasesforwhichthearrivalrateortheaverageservicetimesmaybesubjecttorelevantvariationsduringtheproject,sothatrestaffingtomeetthedeadlineortoavoidwastingresourcesisnecessary.
Fig.10-aalsoreportstheactualprojectstaffing.Theseactualstaffinglevelswereobtainedoptimisticestimate,notaccountingforoverheadssuchastrainingonthejob,administrativedutiesorabsencessuchasvacations.Thesimulatedcurvecorrespondstoanaveragestaffingof36peopleperday,whiletheactualstaffingwas,onaverage,29peopleperday.Inotherwords,thesimulationtendstoproduceanaverageoverstaffingofabout20%.Thefigurealsohighlightsaninitialoverstaffing(theleftmostpointonthesimulatedcurve),duetotheabsenceofsufficienttrainingmaterial.TheMann-Whitneytest(p-value1.4e-5forasignificancelevelof95%)confirmedthatthedifferencebetweenthetwocurveswassignificant.Thus,thesimulationtendstogiveusapessimistic,conservativeestimateofthestaffing.However,theoverallaccuracy
DRAVII.LESSONSLEARNED
deadline,whilemonitoringtheprojectstaffinglevel.givingrelevantinsightstothemanagers.
October17,2003
ishighersincetheactualstaffingshowninFig.10-aisthetheoreticalequivalentactualstaffingcorrespondingtoanidealsituationwherepeoplework20daysamonth.
Massivemaintenanceinterventions,aswellasmanyothersoftwareengineeringprojects,
arefirmdeadlineprojects.ThusakeyparametertomonitoristhelikelihoodofmeetingthesimulationisaneffectivetooltomonitorandassessthelikelihoodofmeetingagivenprojectAnotheradvantageoftheproposedapproachisthatreworkimpactmaybeeasilyestimated.
deadline,inthatdelaysmaysubstantiallyinfluencetheprojectcost.Weexperiencedthatqueuing
Differentsimulationswithdifferentteamsizesandreworklevelswillleadtodifferentestimates,Modelparameterscouldbeadjustedasnewdataarrives,thusrefiningearlyestimates.Queuing
simulationand,moregenerally,queueingtheory,hasfurtheradvantageswhenappliedtosoftware
maintenanceprojects.Indeed,itisessentialthatthenumberofmodelinputparametersiskept
DRAFT
FTbydividingthedaily-recordedeffortby8(thenumberofworkinghoursperday).Thisisan
31
lowand,furthermore,thatthoseinputparameterscanbeeasilyestimatedandunderstoodbymanagers.Thoughthemodelper-secanbehighlycomplex,thekeyobservationisthatitsinterfacecanbekeptrelativelysimpleandintuitive.Webelievethattheparametersrequiredtorunasimulationarereadilyunderstandabletopeopleworkinginthesoftwareindustry.Evenwithacomplexmodelaccountingformultiplemaintenancecentersandmulti-phasemaintenanceprocesses,therequiredinputparametersaresimply:themaintenancerequestinter-arrivaltimes,themeaneffortrequiredbyamaintenancetask,andatargetdeadline(seeFig.5).Thusqueuebaselinesbycomputingsimpledescriptivestatistics.
parametershaveintuitivephysicalmeaningandtheymaybeeasilyobtainedfromexistingprojectWhentalkingtoprojectmanagersoftheY2Kproject,wenoticedthattheyhadnodifficultyinprovidingestimatesforthemodelrequiredparameters.However,theyoftenbasedthoseestimatesonahybridapproach,usinganalogyandalgorithmicmethods.Basically,inter-arrivaltimesandeffortrequiredinamaintenanceinterventionwerecomputedastheaveragevalueoverpastprojectdata.Figureswerethenvalidatedandadjustedaccordingtothemanagerexperience.Thisempiricalstudyconfirmedthatqueueingsimulationrequiresfinegrainrecordeddata,dailyorhalf-dailybased;weeklybasedrecordingofeffortandinter-arrivaltimesproducesmodelswhicharetoocoarse,evenworse,morecomplexmodelsaccountingforbatcharrivalsmaybeSoftwareprojectsexhibitcharacteristicsquitedifferentfromotherphenomenathatcanbe
DRArequired.
October17,2003
modeledbyclassic(nonsimulation-based)queueingtheory.Inourcasestudy,stochasticsimu-
lationsrevealedthenecessitytostudythedynamicaspectsoftheprocess(i.e.,projectstartupstudy,projectlifespanwasaboutoneyear,projectstartupandclose-downcoveredabout30%projectandnon-simulationbasedapproachesshouldonlybeconsideredasafirstapproximation.Queueing-basedmodelstendtoproduceastaffinglevelthatoverestimatestheactualstaffing.Thisisespeciallytrueforthetransientphases.Thus,forafirmdeadlineproject,intheworst-casescenario,aqueue-basedmodelwillleadtoaminimizationoftheprojectmanagerriskofexcessivedelays.Inthecasestudyreportedhere,itwasalsoobservedthatthetotaleffortspentontheprojectandtheareaunderthesimulatedcurveshowninFig.10donotappeartobeclose.Adeeperanalysisrevealedthattheaccuracyofthemethodishigherthanthe20%
DRAFT
andclose-down,averagefinishingdate,likelihoodoffinishingwithinacertaindate).Inthiscaseoftheentireproject:inotherwords,thetransientpartwasasubstantialportionoftheentire
FT32
averageerrorshowninthefigure.Discussionwithcompanymanagersrevealedthat,accordingtoacompanyguideline,theaveragenumberofworkingdaysinamonthwasestimatedtobebetween17and17.5insteadof20.Thisfigureaccountsforthedifferentsourceofoverheadsandabsences.ThustheactualstaffingofFig.10mustbeincreasedbyabout13-15%.Inotherwords,theaveragestaffinglevelanymanagerofthecompanywouldhaveacceptedwasnot29but33/34maintainerswithacorrespondingerrorofabout6-9%.
Intheexperienceoftheauthors,theproposedapproachhastobecomplementedandintegratedquests.Giventhecurrentstateoftheartinsoftwareengineering,weperceivehumaninterventiontobeessentialinordertominimizeconflictingmaintenanceinterventions,toevaluatetheimpactofcommunicationoverheadinsideandamongmaintenanceteams,etc.
Afinalissueistheapplicabilityandgeneralityoftheapproach.AspointedoutintherelatedworkSection,simulationbasedapproacheswerepreviouslyproposedintheliterature;inparticularin[18]theauthorobservedthatthereareprojectswhereBrooks’lawseemsnottobecompletelyapplicable.Thisisalsocentraltoourapproach;werelyonthehypothesisthatmaintenanceinterventionsmaybestandardized.Inotherwords,increasingthenumberofpeople,decreasestheprojectduration.Othermassivemaintenanceprojects,suchastheEurowithadetailedwork-breakdownstructureandaplanningprocess,todispatchmaintenancere-
DRAmassivemaintenanceintervention[2].
VIII.CONCLUSIONS
andassessmentofmaintenanceprojects.
October17,2003
conversionforthenewEuropeanUnionmembers,orchangingthephonenumberingsystem
(tobeperformedinUSAby2010),arelikelytoexhibitcharacteristicsverysimilartoaY2K
Datafromamassive,correctivemaintenanceprojecthavebeenpresentedtogetherwithanap-
proachbasedonqueueingtheoryandstochasticsimulationtodealwiththestaffing,managementQueueingtheoryandstochasticsimulationsarehighlyeffectiveatevaluatingstaffinglevels,
aswellassupportingandassessingrestaffingdecisions.Thepapershowshowsimulationscanbecarriedouttomodelprojectstartup,close-down,andtoevaluatethelikelihoodofmeetingtheprojectdeadline.Thelatterfact,evaluatedfordifferentnetworktopologiesandreworklevels,givestothemanagementabroaderviewofthecomparisonbetweentheactualprojectestimatedstatusandtheprojectplan.Thelikelihoodofsuccesscanbeusedtoestablishatrade-offbetween
DRAFT
FT33
staffing/restaffing,acceptedrisks,projectdelaysandcustomerexpectations.Themainadvantagesoftheproposedapproachcanbesummarizedasfollows:
Itishighlyeffectiveatevaluatingthelikelihoodofmeetingtheprojectdeadline;
Rework,aswellasabandonment,canbeexplicitlymodeled,andtheireffectsonprojectstaffingandprojectmilestonesassessed;and
Projectstart-upandclose-downcanbeexplicitlymodeled.
Asafinalremark,ithasbeenshownhowdifferentprojectmanagementapproachesimpactonresourceutilization,therebyallowingeffectivecomparisonofdifferenttopologieswithrespecttothelikelihoodofmeetingtheprojectdeadline.
IX.ACKNOWLEDGEMENT
Thisresearchhasbeensupportedbytheproject”VirtualSoftwareFactory”,fundedbyMin-isterodellaRicercaScientificaeTecnologica(MURST),andjointlycarriedoutbyEDSItaliaSoftware,UniversityofSannio,UniversityofNaples”FedericoII”andUniversityofBari.
REFERENCES
[1]T.DeMarco,ControllingSoftwareProjects,YourdonPress,1982.
[2]C.Jones,“Mass-updatesandsoftwareprojectmanagementinisorganizations-http://www.artemis.it/artemis/artemis/lang
34
[10]T.PearseandP.Oman,“Maintainabilitymeasurementsonindustrialsourcecodemaintenanceactivities,”inProceedings
ofIEEEInternationalConferenceonSoftwareMaintenance,Opio-NiceFrance,Oct1995,pp.295–303.[11]B.W.Boehm,SoftwareEngineeringEconomics,Prentice-Hall,EnglewoodCliffs,NJ,1981.
[12]BoehmB.W.,HorowitzE.,MadachyR.,ReiferD.,ClarkB.K.,SteeceB.,WinsorBrownA.,ChulaniS.,andC.Abts,
SoftwareCostEstimationwithCocomoII,Prentice-Hall,EnglewoodCliffs,NJ,2000.
[13]W.K.Wiener-Ehrlich,J.R.Hamrick,andV.F.Rupolo,“Modelingsoftwarebehaviourintermsofaformallifecyclecurve:
Implicationsforsoftwaremaintenance,”IEEETransactionsonSoftwareEngineering,vol.10,no.4,pp.376–383,1984.[14]L.C.BriandandV.R.Basili,“Aclassificationprocedureforaneffectivemanagementofchangesduringthesoftware
maintenanceprocess,”inProceedingsofIEEEInternationalConferenceonSoftwareMaintenance,Orlando,FL,1992.SystemsandSoftware,vol.46,no.2/3,pp.91–106,1999.
[15]M.I.Kellner,R.J.Madachy,andD.M.Raffo,“Softwareprocesssimulationmodelling:Why?what?how?,”Journalof[16]R.H.MartinandD.M.Raffo,“Amodelofthesoftwaredevelopmentprocessusingbothcontinuousanddiscretemodels,”
InternationalJournalofSoftwareProcessImprovementandPractice,vol.5,no.2/3,pp.147–157,2000.Software,vol.47,no.9,2000.
[17]D.M.RaffoandM.I.Kellner,“Empiricalanalysisinsoftwareprocesssimulationmodeling,”JournalofSystemsand[18]T.K.Abdel-Hamid,“Thedynamicsofsoftwareprojectstaffing:asystemdynamicsbasedsimulationapproach,”IEEE
TransactionsonSoftwareEngineering,vol.15,no.2,pp.109–119,1989.Cliffs,N.J.,1991.
vol.26,no.3,pp.20–29,1993.1995.
[19]T.K.Abdel-HamidandS.E.Madnick,SoftwareProjectDynamics:AnIntegratedApproach,Prentice-Hall,Englewood[20]T.K.Abdel-Hamid,“Adapting,correcting,andperfectingsoftwareestimates:amaintenancemetaphor,”IEEEComputer,[21]F.Brooks,TheMythicalMan-Month,20thanniversaryedition,Addison-WesleyPublishingCompany,Reading,MA,[22]G.E.StarkandP.W.Oman,“Softwaremaintenancemanagementstrategies;observationsfromthefield,”Journalof
SoftwareMaintenance-ResearchandPractice,vol.9,pp.365–378,December1997.
[23]M.Jorgensen,“Experiencewiththeaccuracyofsoftwaremaintenancetaskeffortpredictionmodels,”IEEETransactions
onSoftwareEngineering,vol.21,no.8,pp.674–681,1995.
DRA[30]IEEEstd1219:StandardforSoftwaremaintenance,1998.
Engineering,vol.23,no.11,pp.736–743,1997.
October17,2003
[24]M.H¨ost,B.Regnell,J.NattochDag,J.Nedstam,andC.Nyberg,“Exploringbottlenecksinmarket-drivenrequirements
managementprocesseswithdiscreteeventsimulation,”inProsim,London,UK,July1999.
[25]G.PapapanagiotakisandP.Breuer,“Asoftwaremaintenancemanagementmodelbasedonqueueingnetworks,”Journal
ofSoftwareMaintenance-ResearchandPractice,vol.6,no.1,pp.73–97,1994.
[26]R.Ramaswamy,“Howtostaffbusinesscriticalmaintenanceprojects,”IEEESoftware,vol.7,no.7,pp.90–95,May2000.[27]I.PodnarandB.Mikac,“Softwaremaintenanceprocessanalysisusingdiscrete-eventsimulation,”inConferenceon
SoftwareMaintenanceandReengineering,Lisbon,Portugal,March2001,pp.192–195,IEEESocietyPress.
[28]D.M.Raffo,W.Harrison,andJ.Vandeville,“Coordinatingmodelsandmetricstomanagesoftwareprojects,”International
JournalofSoftwareProcessImprovementandPractice,vol.5,no.2/3,pp.159–168,2000.
[29]JerryBanks,JohnCarson,andBarryL.Nelson,Discrete-EventSystemSimulation,PrenticeHall,1998.
[31]M.J.ShepperdandC.Schofield,“Estimatingsoftwareprojecteffortusinganalogies,”IEEETransactionsonSoftware
FTDRAFT
35
[32]R.Arnold,“Softwarereengineering,”1993.
[33]E.C.Lynd,“Livingwiththe2-digityear,year2000maintenanceusingaproceduralsolution,”inProceedingsofIEEE
InternationalConferenceonSoftwareMaintenance,Bari,Italy,1997,pp.206–212.
[34]M.Stone,“Cross-validatorychoiceandassessmentofstatisticalpredictions(withdiscussion),”JournaloftheRoyal
StatisticalSocietyB,vol.36,pp.111–147,1974.
[35]G.BoxandM.Jenkins,TimeSeriesForecastingAnalysisandControl,HoldenDay,SanFrancisco(USA),1970.[36]MylesHollanderandDouglasA.Wolfe,NonparametricStatisticalMethods,2ndEdition,Wiley-Interscience,1999.[37]JayL.Devore,ProbabilityandStatisticsforEngineeringandtheScience,DuxburyPress,1999.
GiulianoAntoniolreceivedhisdoctoraldegreeinElectronicEngineeringfromtheUniversityofPaduain1982.HeworkedatIrstfortenyearswereheledthetheIrstProgramUnderstandingandReverse
PLACEPHOTOHERE
Engineering(PURE)Projectteam.GiulianoAntoniolpublishedmorethan60papersinjournalsandinternationalconferences.HeservedasamemberoftheProgramCommitteeofinternationalconferencesandworkshopssuchastheInternationalConferenceonSoftwareMaintenance,theInternationalWorkshoponProgramComprehension,theInternationalSymposiumonSoftwareMetrics.Heispresentlymemberof
theEditorialBoardoftheJournalSoftwareTestingVerification&Reliability,theJournalInformationandSoftwareTechnology,theEmpiricalSoftwareEngineeringandtheJournalofSoftwareQuality.HeiscurrentlyAssociateProfessortheUniversityofSannio,FacultyofEngineering,whereheworksintheareaofsoftwaremetrics,processmodeling,softwareevolutionandmaintenance.
DRAPLACEHEREPHOTO
October17,2003
AnielloCimitilereceivedtheLaureadegreeinElectronicEngineeringfromtheUniversityofNaples,Italy,in1973.HeiscurrentlytheChancelloroftheUniversityofSannioinBenevento,Italy,whereheisafullProfessorofComputerScience.Previously,hewaswiththeDepartmentof’InformaticaeSistemistica’attheUniversityofNaplesFedericoII.Since1973hehasbeenaresearcherinthefieldofsoftwareengineeringandhislistofpublicationscontainsmorethan100paperspublishedinjournalsandconferenceproceedings.Heservesintheprogramandorganizingcommitteesofseveralinternational
conferencesandintheeditorialandreviewercommitteesofseveralinternationalscientificjournalsinthefieldsofsoftwareengineeringandsoftwaremaintenance.Heisaco-editorinchiefoftheJournalofSoftwareMaintenanceandEvolution:ResearchandPractice.Hehasbeenresponsibleformanyinternationalandnationalappliedresearchprojects.Hisresearchinterestsincludesoftwaremaintenanceandtesting,softwarequality,reverseengineering,andreusereengineering.
FTDRAFT
36
GiuseppeA.DiLuccareceivedtheLaureadegreeinElectronicEngineeringfromtheUniversityofNaples”FedericoII”,Italy,in1987andthePh.D.degreeinElectronicEngineeringandComputerSciencefrom
PLACEPHOTOHERE
thesameUniversityin1992.HeiscurrentlyanassociateprofessorofComputerScienceattheDepartmentof”Ingegneria”oftheUniversityofSannio.Previously,hewaswiththeDepartmentof’InformaticaeSistemistica’attheUniversityofNaples’FedericoII’.Since1987hehasbeenaresearcherinthefieldofsoftwareengineeringandhislistofpublicationscontainsmorethan50paperspublishedinjournalsand
conferenceproceedings.Heservesintheprogramandorganizingcommitteesofconferencesinthefieldofsoftwaremaintenanceandprogramcomprehension.Hisresearchinterestsincludesoftwareengineering,softwaremaintenance,reverseengineering,softwarereuse,softwarereengineering,webengineering,andsoftwaremigration.
DRAPLACEHEREPHOTOmaintenancefield.
October17,2003
MassimilianoDiPentareceivedhislaureadegreeinComputerEngineeringin1999andhisPh.D.inComputerScienceEngineeringin2003attheUniversityofSannioinBenevento,Italy.Currentlyhe
iswithRCOSTResearchCentreOnSoftwareTechnologyinthesameUniversity.Hismainresearch
interestsincludesoftwaremaintenance,reverseengineering,programcomprehensionandsearch-basedandworkshops.Heservestheorganizingcommitteesofworkshopsandconferencesinthesoftware
softwareengineering.Heisauthorofabout25papersappearedininternationaljournals,conferences
FTDRAFT
因篇幅问题不能全部显示,请点此查看更多更全内容