您的当前位置:首页正文

四年级数学乘法教学设计

2024-10-18 来源:威能网


四年级数学乘法教学设计

四年级数学乘法教学设计

作为一名为他人授业解惑的教育工作者,往往需要进行教学设计编写工作,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。教学设计应该怎么写才好呢?以下是小编精心整理的四年级数学乘法教学设计,仅供参考,大家一起来看看吧。

四年级数学乘法教学设计1

教学目标:

1、通过探索乘法分配律中的活动,学生进一步体验探索规律的过程,初步学习体会提出猜想的方法及类比,说理,举例论证的方式,发展学生的思维力,创造力。

2、引导学生在探索的过程中,自主发现乘法分配律,并能用字母表示。

3、能够运用乘法的分配律进行简便计算。

重点、难点:

重点:学生参与推导乘法分配律的过程。

难点:乘法分配律的推理及运用。

教学过程:

一、回顾激趣,提出猜想.

(1)同学们,学习新课前,我们先来回顾学过的运算定律。找出共同点?和或积同。

乘法交换律的字母公式( )。 乘法结合律的字母公式( )…….

(设计意图:四个公式板书在黑板,以便与乘法分配律对比)

(2)利用学过的长方形周长内容得出两种不同解题方法。刚才的计算中你发现这两道题有什么关系吗?2×( 37+63) 2×37 + 2×63

教师让学生比较两个算式的异同点,并指名说一说自己找出的规律。

引导学生发现:这两个算式的运算顺序不同,但结果相同,两道题其实可以互相转化,可以用一个等式表示:2×( 37+63) =2×37 + 2×63

(3)将学生的知识迁移到本节课新授内容,在课的开始,积极调动学生学习积极性。

二、引导探究,发现规律。

1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)

我班同学男生27人,女生25人,每人植树3棵,共植树?棵(植树节3.12)

(1)全班同学独立完成。

(2)谁愿意把自己的方法说给大家听听。(生回答,师板书)

还有不一样的方法吗?谁来说说看?(生回答,师板书)

板书:(27+25)×3 27×3+25×3

评讲:算式(27+25)×3 和27×3+25×3的每一步各表示什么?谁能说给大家听听?

(3)观察这两个算式,你有什么发现?

引导学生比较两个算式异同点,并指名学生说一说自己想法,思路。

生:这两个算式的得数是一样的。

师:是的,虽然他们的格式不同,但他们的得数相同,所以我们可以用一个符号把这两个算式联系起来。

生:等于号

师:对,用等于号相连,表示这两个式子是相等的,一起读一读,认识这两种方法的结果是一样的,师:再和前面的一组式子一起观察,

(让学生通过读,感悟到左边是两个数的和乘一个数,右边的两个数的积加上两个数

的积)

2、举例验证,进一步感受

认真观察屏幕上的这个等式,你还能举出几个类似的例子来验证吗?(板书:举例)

(1)验证方法:要求每人出两组算式,数字随意举例,进行计算,验证你举的例子是否相等。然后拿到小组内交流(学生小组合作交流,教师巡视指导。)

(2)学生回报:谁来说一说自己举的例子。

(3)同学们,请看一看这三个同学举的例子,每组的结果都是相同的,我们就可以用等号把它们连接起来。(板书)

(4)轻声读这些等式,你发现了什么?

(设计意图:通过多个例子,揭示乘法分配律的普遍规律)

3、归纳总结,概括规律。

(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

(2)从刚才的举例过程中,你能发现乘法运算中的规律吗?

学生回报。

(出示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。)

同学们发现的这个知识规律,叫做乘法分配律。 (板书:乘法分配律)

(3)如果用a、b、c分别表示三个数,你会用字母表示乘法分配律吗?

结合学生回答,教师板书:(a+b)×c=a×c+b×c 齐声读两遍。

(4)对于乘法分配律,用字母来表示,感觉怎样。

与乘法交换律、结合律想对照:a×b=b×a (a×b)×c=a×(b×c)

(a+b)×c=a×c+b×c 比较有什么不同?

(设计意图:增强学生对乘法分配律涉及到加法的运算难点的理解)

三、加强应用、深化理解

1、根据运算定律,在( )填上适当的数。

(10+7) ×6=( )×6+7×( )8×(125+9)=( )×125+( )×9

7×48+7×52=( )×(48+52) (7×48+7×52中有相同因数吗?)

(设计意图:通过具体的练习理解乘法分配律)

2、火眼金睛看一看:判断下面算式是否正确?并说明理由?

56×(19+28)= 56×19+28 ( )

32×(7×3)= 32×7+32×3 ( )

25×12+12×75 = 12×(25+75) ( )

25×99+25 =(99+1)×25 ( )

3、利用乘法分配律,计算下列各题。

( 80 + 4 ) ×25 34 ×72 + 34 ×28 88×125试做

师小结:通过前两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

4、34×10+27×10+39×10可不可以用乘法分配律

师:说明乘法分配律,不仅仅只适用于两个数的和,也可以三个数的和,四个数的和可以吗?说明也可以是:几个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加。(修改乘法分配律的板书)

5、找朋友

师:如果一个同学说出乘法分配律的左边部分,那你就说出它的右边部分,如果他说出的是右边部分,你就对出左边部分。看谁反应快。

6、24×8—4×8=(24—4)×8吗?

师:说明乘法分配律,不仅仅只适用于两个数的和,也可以是两个数的差,三个数的差可以吗?说明也可以是:几个数的和(或差)与一个数相乘,可以先把它们分别与这个数相乘,再相加(或相减)。(设计意图:拓展书本上乘法分配律的概念)

7、用简便方法计算下列各题。(8+4)×25 34×72+34×28

(设计意图:概念只有在具体的练习中才能逐步理解,概念教学必须当堂采用讲练相结合的方法,学生才能消化抽象的概念)

四、总结:

1,这节课你的收获是什么?什么叫做乘法分配律?(设计意图:不能让总结性提问只是走了过场,通过这个环节切实起到梳理知识,提高学生总结能力)

2、如果把乘法分配律中的加法改成减号,等式是否依然成立?根据乘法分配律,你能把下列等式填写完整吗?同学们课后交流一下,下节数学课我们再继续研究。

教师激发学生好胜心:在乘法分配律中有许多变化,题里辨别出用乘法分配律简算的题呢?36×99+36 73×31+28×31—31

3.思考:填写完整:

a×(m-n)= a×125+b×125-c×125

四年级数学乘法教学设计2

教学内容:

一个因数末尾有0的乘法

教学目的:

使学生掌握第一个因数末尾有0的乘法的计算方法,能够正确地计算.

教学过程:

一、复习

教师先把教科书中的复习题按下面的格式写在黑板上.

20×3 12×4 200×3

120×4 20xx×3 1200×4

然后让学生口算,教师逐题从上到下分别写出左右两组题的得数.然后提问:观察每一组题,第一个因数有什么特点?乘积有什么特点?怎样算比较简便?

教师总结学生的回答:第一个因数末尾有0的乘法可以先用第二个因数乘第一个因数

中0前面的数,再看第一个因数末尾有几个0,就在乘得的数的后面添几个0.

二、新课

1.教学例9.

教师出示例题350X3,提问学生:这道题怎样用笔算?

教师再提问:还有更简便的算法吗?

学生回答后,教师告诉学生:第一个因数末尾的0可以先不计算,只用乘法去乘0前面的数,最后再把第一个因数末尾的0、落下来.然后让学生列竖式用简便算法计算.

教师接着出示2500X3,让学生用简便方法试算.

集体订正时,让学生说一说怎样计算简便.

2.做例9下面“做一做”中的题目.

指导学生做“做一做”中的题目时,可先让学生独立做,教师要注意巡视,了解学生计算的情况.

三、课堂练习

1.做练习六的第1题。

让学生独立做,教师注意行间巡视,了解学生竖式写得对不对,有什么问题.然后集体订正,结合学生出现的问题加以说明.

2.做练习六的第2题. 让学生独立做,直接把得数写在教科书上.教师了解学生在2分15秒内全做完的学生

有多少,哪些学生还没有做完.然后集体订正.

3.做练习六中的第3题.

学生做前教师提问:“各是多少”是什么意思?要求的是什么?

4.做练习六中的第4题.

让学生独立用竖式计算.教师行间巡视,个别辅导.然后集体订正.

5.做练习六中的第5题.

让学生独立解答.教师行间巡视,个别辅导.

四年级数学乘法教学设计3

教学内容:

介绍电子计算器,运用计算器进行四则运算,探索计算规律。(课文第38页的内容)

重点:运用计算器进行一些简单的四则运算。

难点:对计算器一些功能键了解。

关键:利用实物加强练习、应用

教学目标:

1、 使学生认识阈学会使用计算器。

2、 会利用计算器进行一些四则运算,并探索一些数学规律。

教具准备:

计算器、实物投影仪。

学具准备:

电子计算器(最好每人一个)。

教学过程:

一、提示课题:

1、 教师取出电子计算器,让学生也合出自己的计算器。

教师:猜一猜,今天,这一节刘我们一起学习什么?

学生:认识计算器。

板书呈现:神奇的计算器。

2、 教师:你知道如何使用计算器吗?

二、引导探索

1、 让学生说一说他自己所掌握的使用计算器的方法。

这时,学生可能会展示一些简单的加、减速法的计算方法。教师应给学生提供较多时间,让学生展示自己的技能、知识。从中也可以了解本班学生对操作计算器的认识程度,为教学工作提供帮助。

2、 认识一些功能键。

(1)由学生来说明。

随着计处器的普及,大多数学生在教师讲解计算器的使用方法前,已经懂得了一些操作计算器的方法以,所以本活动可以先让一部分学生做小才师,来介绍计算器各功能键的作用,然后根据学生的介绍,教师再作适当的补充。

(2)集中说明一些功能键的作用。

① 开关及清除键。

按一下此键,打开计算器,再按一下就关赣计算器。

② 运处符号键。

只要介绍“+、-、×、/“键的使用方法 。

③ 数学键

数字键的使用。如按12 。显示屏就显示“1 2”。

④ 等号键

按下数字键及运算符号键后,按下此键,显示屏就显示出输入算式的计算结果。

⑤ 小数点键

按下此键,就呈现一个小数点

因为学生所准备的计算器的型号不同,所以各计算器中配置的功能键也不一样,以上5种功能键是比较普遍的存在。如果学生有兴趣,教师还可以借助一些计算器,介绍一些其他的功能键。

如:时间键、日期键、括号键、存储运算键等。

3、 尝试练习。

(1)计算25×4

操作过程:

输入25→×→4→=,屏幕上呈现100,就是计算的结果。

(2)计算一份菜单的价钱。

① 实物投影呈现:

菜单

酒:14元

凉拌豆腐:3元

肉丝:5元

清蒸鱼:16元

三鲜汤:12元

甜点:8元

青菜:3元

② 让学生用计算器计算。

③ 反馈计算结果。

4、索一些数学规律。

(1)呈现计算题。

① 1+2+3+4……+98+99+100

② 999×9 9999×9 99999×9

(2)让学生独立用计算器计算,教师巡视课堂。

(3)反馈计算结果。

(4)引导提问:通过计算,你有什么发现(特别指导观察第②题中各算式的计算结果,并进行比较)?你有什么感想和体会?

学生可能会提出一些简便的计算方法。

如:

① 1+2+3+1+……+98+99+100=101×50,只要用计算器计算101×50

② 999×9=8991

9999×9=89991

99999×9=899991

发现:积的个位都是1;积的最高位都是8;中间几位数都是9,9的个数比第1个因数中的9个数少一个。

接着,让学生说一说以下几个算式的结果:

999999×9

9999999×9

99999999×9

通过以上活动,让学生观察计算结果、发现规律,同时突出了运用简便方法计算很可能比计算器还要快定眯,充分体现了计算方法的灵活性,也提高了学生的学习兴趣。

课堂活动

课文第39页的“试一试“。

[板书设计]

神奇的计算器

计算器图 四则运算题

四年级数学乘法教学设计4

学情分析:

乘法分配律这个知识点在本节课以前学生已经有一些潜移默化的理解,在实际计算中也有应用,如:本单元第一课时的《卫星运行时间》乘数是两位的乘法中,“114×21=” 不论是第一种“114×20=2280,114×1=114, 2280+114=2394 ”还是第四种用竖式计算,其实质都是在利用乘法分配律这一理论依据,即将21个114,分成20个114和1个114的和,只是表达形式不同罢了。因此,基于这些基础,我教学时特别注重与旧知的联系和在意义上的沟通。

教学目标:

1.理解并掌握乘法分配律并会用字母表示。

2.能够运用乘法分配律进行简便计算。

3.在乘法分配律的发现过程中训练学生观察、归纳、概括等能力。

4.感受“由特殊到一般,再由一般到特殊”的认识事物的方法,增强独立自主、主动探索、自己得出结论的学习意识。

教学重点:

理解并掌握乘法分配律。

教学难点:

乘法分配律的推理及运用。

教学过程:

一、情景激趣,提出猜想

1.情景

暑假中,我们谕小娃娃表演的《阳光羌娃》在比赛中获得了巨大的成功,而且,他们马上还要到香港参加演出。(出示照片)

出示资料: 他们每天都在辛苦地训练着,有时会练得吃饭的时间都没有,昨天晚上,王老师就给参加训练的18个男生和23个女生每人准备了一份8元的快餐,你知道王老师一共用了多少钱吗?

(设计意图:以学生熟悉的学校中的大事作为问题背景,可以让学生切实的感受到数学的广泛应用性,也利于学生主动解决问题。)

①整理条件、问题

从这段资料中你知道了那些信息?王老师遇到了哪些问题?

②学生列式,抽生回答: (18+23)×8, 18×8+23×8

③交流算式的意义

第一个算式先算什么?再算什么?第二个算式呢?

④计算:(发现两个算式结果相等)

⑤观察、分析算式特点

咦,我发现这两个算式非常有意思。你看看,这是两个不同的算式,很多地方都不相同,仔细看看,又有相同的地方,对吧!

现在,就来仔细观察一下这两个算式,看看它们到底有哪些相同点?又有哪些不同点?

⑥全班交流,引导学生从下面几个方面进行思考

A.涉及到得运算及顺序:都包含了+、×这两种运算,左边是先算加法,合起来以后再乘;右边是分别先乘,然后再加。

B.涉及到的数:都用到了18、23和8这三个数,其中8在左边出现了一次,在右边出现了两次。

C.计算结果:结果相等。

(设计意图:对算式意义的分析让学生明白这两个算式相等的道理,而从外在特点的分析则让学生初步感知乘法分配律的特点。同时,细致的特点分析也为学生后面的举例验证打下基础)

2.提出猜想

真有趣,运算顺序不同,数据也有不一样的,结果却一样,那是不是只有这一个算式才是这样呢?还是像这样的算式都有这样的规律呢?

怎样才能知道像这样的算式都有这样的规律?

引导学生想到用举例的方法进行验证。

师小结:要想知道这是不是一个普遍的规律,那我们就举出一些这样的例子,再看看它们的结果想不想等就可以了。

(设计意图:对一个人而言,记忆一个知识、规律并不是最重要的,最重要的是他要知道从哪里去寻找知识和规律,要知道他的发现如何去获得证明。本节课就是要以乘法分配律的学习为载体,培养学生这方面的能力,这才是真正的立足于学生一生的发展而在教学。)

二、举例验证,证明合理性

1.全班举例:抽生举例,全班进行判断,看所举的算式是否符合猜想的特征。

2.分组举例

两个孩子为一组,一起举一个例子,再一起计算验证,看结果是否相等。

3.交流:谁愿意把你举的例子和大家一起分享?

A.这个式子符合要求吗?

B.这些式子都有一个共同的规律,这个共同的规律是什么?

教师引导学生小结:左边都是把两个数合起来再与第三个数相乘,右边是分开乘,再把两个积相加,右边算式中这个相同的乘数,在左边算式中放在了括号的外面。

(设计意图:让学生经历举例验证的过程,经历归纳概括的过程。)

三、概括归纳,建立模型

1.个性概括

这样的式子你们还能写吗?能写完吗?

强调这样的例子还有很多很多,是写不完的。

你能用一个式子将所有的像这样的式子都概括出来吗?

学生用自己的方法概括规律。(学生可能用文字概括,可能用图形符号概括,可能用字母概括)。

2.统一认识

教师指出一般用a、b、c表示式子中的三个数,这个规律可以表示成

(a+b)×c=a×c+b×c

给出规律的名称:今天,我们一起动手动脑发现了这个非常有趣的`规律,这个规律是四则运算中一个非常重要的规律,叫做乘法分配律。

3.进一步认识

这个式子表示两个数合起来与第三个数相乘的结果与用这两个数分别与第三个数相乘,再把两个积相加的结果相等。反之,两个数都与同一个数相乘,再把积相加所得到的结果与先把这两个数合起来再与第三个数相乘,所得到的结果相等。

齐读式子。

(设计意图:学生通过不完全归纳法,得出规律。在这个过程中,通过不同方法的概括,培养学生的抽象能力,尤其是分析与综合的能力,归纳与概括的能力。)

四、巩固应用,深化认识

1.哪些算式与72×35相等

72×30+72×5

72×35 72×30+5

70×35+2×35

70×35+2

问:为什么相等?

(设计意图:让学生理解乘法分配律的本质意义)

2.你会填吗?

(10+7)×6= ×6+ ×6

8×(125+9)=8× +8×

7×48+7×52= ×( + )

问:订正时强调第一小题为什么这样填?第三个式子中括号外面为什么要写7。

(设计意图:学生进一步深刻理解乘法分配律)

3. 7×48+7×52 7×(48+52)

这两个式子你想选择哪个进行计算?为什么?

如果只给你第一个式子,你会想办法让你的计算变得简便吗?

小结:利用乘法分配律有时候可以使计算变得更简便。

(设计意图:通过学生的观察,明白乘法分配律在计算中的意义。)

<<<1234>>>

4.先想一想,下列各题怎样计算更简便,把你的简便方法写出来。

①34×72+34×28(订正时问:为什么不直接算)

(80+4)×25

订正时问:把(80+4)×25写成80×25+4×25依据是什么?

如果不用好不好算?

(80+20)×25

问:这道题与(80+4)×25的样子一样,都是两个数的和与第三个数相乘,为什么你们又不用乘法分配律来计算了呢?

教师小结:在计算中要根据数据特点,灵活运用乘法分配律。

②21×25 75×99+75

小结:在计算中遇到不符合乘法分配律特点的式子,可以利用拆数等方法,在不改变原数大小的前提下将式子变成符合乘法分配律特点的式子,然后再进行简算。

(设计意图:通过题组练习,让学生在计算中要根据数据特点,灵活运用乘法分配律,培养学生思维的灵活性,不生搬硬套题型。)

五、全课小结

孩子们,你们今天收获了什么?

当你们在一些具体的问题中发现某些规律,而你又不敢肯定它正确时,你可以怎么办呢?

板书设计

乘法分配律

(18+23)×8 (18+23)×8=18×8+23×8 7×48+7×52=7×(48+52)

=41×8 … … … …

=328(元) 学生举例 … … … … 34×72+34×28 (20+4)×25

18×8+23×8 … … … … (80+20)×25

=144+184 个性概括:… …

=328(元) (a+b)×c=a×c+b×c 21×25 75×99+75

四年级数学乘法教学设计5

【设计理念】

小数乘整数是在学生学习了整数乘法的意义和计算方法,整数乘法运算定律,因数与积的变化规律,小数的意义和性质,小数加、减法的基础上进行学习的。以上已习得的知识、经验对本节课知识的构建非常有必要,因此我们在课的设计上力求沟通新旧知识点的联系,实现新旧知识的迁移和转化。教材以三峡工程——三峡发电了为素材引入课题,以“因数的变化引起积的变化规律”为着力点,把教学重点放在理解算理和方法上。引导学生在小数乘法到整数乘法的转化过程中逐步达成“理解小数乘整数”算理这一目标,最终归纳出“小数乘整数”的一般计算方法。

【教学目标】

1、经历小数乘整数算理的理解和计算方法的探索过程,交流算法的过程中学生能说出算理,明白计算方法,并体验算法的多样性。

2、通过独立思考、小组合作等环节引导学生能进行有序的自主探索中,培养学生的分工合作意识,。

3、在对算理的学习交流时,沟通知识的内在联系体会转化思想,培养数学推理能力,规范数学表达。

4、在解决实际问题的数学活动中,感悟数学来源于生活,体会小数乘整数在生活中

的价值。在学习过程中感受主动参与、合作交流的乐趣,培养自主探索的学习习惯。

【教学重点】

理解小数乘整数的算理及算法。

【教学难点】

在数学活动中引导学生在独立思考和合作交流中运用数学思维方法探索新知。

【教学用具】

多媒体课件、教学视频、音乐、自制答题板。

【教学学法】

主要采用了自主探索,观察发现,合作交流等活动方式,使学生生动活泼、主动的、和富有个性的学习。

【教学手段】

学生通过独立思考、小组合作等等数学活动及多媒体辅助教学,让学生经历知识的发生、发展过程,通过判断、比较、归纳、总结等方式达到帮助学生主动获得知识的目的。

课例前测

班级:姓名:等级:

1、直接写出得数。

0.8×10= 25.6÷100= 0.37×100=

37.5÷100= 59.7÷1000= 0.37×1000=

缩小它的()

2、按要求填一填。

0.568扩大到它的10倍是(),0.568缩小到它的100倍是()

56.48扩大到它的100倍是(),56.48缩小到它的十分之一是()。

430.6扩大它的1000倍是(),430.6缩小到它的一千分之一是()。

3、列竖式计算

25×7= 48×16 =

一、复习导入:

师:同学们,这节我们上什么课?数学课。数学离不开算数这一关,快想想到现在你都学过哪些计算技能?口算是一种吧,……横式]竖式、简算。

让我们做个课前小热身,快速抢答得数!

21×9=

210×9=

2100×9=

我们之所以答得这么快,是因为这几道题之间是有规律可循的。

再仔细观察这组题目及得数,这个规律是什么?

生:增加0,也就是把原数扩大到它的10倍,一个因数不变,另一个因数扩大到原来的10倍,积也扩大到原来的10倍

师:21×9= 2100×9=那这两道呢?

生:一个因数不变,另一个因数扩大到原来的100倍,积也扩大到原来的100倍。

生:也就是说:从上往下观察,一个因数不变,另一个因数扩大到原来的几倍,积也扩大到原来的几倍。

师:说的很好,咱我们再换一个角度想一想!从下往上观察,你又能发现什么规律?

生:一个因数不变,另一个因数缩小到原来的几分之一,积也缩小到原来的几分之一。

师:对,小计算也存有大智慧!因数与积的变化规律,对我们的学习会有很大的帮助!让我们齐读一下:

【设计意图】:导入复习部分的创设意在唤起学生已有的旧知,激活学生的思维,为学习新知识做思维方式和知识上的铺垫。学生探索一下因数与积之间的变化规律,对后面的学习探索留下一点经验储备。

二、提出问题

师:智慧能够创造奇迹。20xx年,当今世界上最大的水电站——三峡水利枢纽工程竣工,它在工程规模、科学技术和综合效益等诸多方面都闻名于世界。想不想亲自目睹下他的风采?(想)请看![放录像]

师:谁来继续介绍一下三峡电厂的具体情况!

师:知道了哪些数学信息?

师:根据这些信息,你能提出哪些乘法问题?(根据学生的回答老师板书了一些有代表性的问题)

【设计意图】:入情入境的教学设计一方面想激发学生继续研究的兴趣,另一方面把数学知识镶嵌在真实的问题情境中,意在密切数学与生活的联系

师小结:刚才,大家提出了这么多有价值的问题,我们先来看第一个问题可以吗?6台发电机组每小时能发电多少万千瓦时?谁来列式?

58.6×6

三、解决问题:

1、估算

师:这个算式和我们以前学的有什么不一样?这就是我们今天要研究的课题(板书课题:小数乘整数)

师:我们以前学过整数乘法,用以前的方法先来估一估这个算式的结果大约是多少?

生:58.6≈60,60×6=360,58.6×6≈360(万千瓦时)

(设计意图:新课标指出:“加强口算、重视估算,提倡算法多样化”,估算意识的培养要渗透在计算教学中,从而为后面学生计算精确值提供依据。)

2/精确计算

师:谁来继续介绍一下三峡电厂的具体情况!

生:(读信息)

师:根据这些信息,你能提出一个用乘法解决的问题吗?(根据学生的回答老师板书了一些有代表性的问题)

【评析:形象的情景教学,使学生如入其境,可见可闻。同时把数学知识镶嵌在真实

的问题情境中,也有助于学生意识到所学知识的相关性和有意义性。】

师:这个算式和我们以前学的有什么不同?

生2:有一个因数是小数!

师:对!我们以前学过整数乘法,可今天遇到了小数乘法。动脑想想,怎样计算58.6×6?

(生独立思考)

2、小组合作

师:有同学已经有了自己的想法!下面进行小组合作!注意:第一,把自己的想法在组内交流;第二,小组长记录下你们小组讨论出来的方法。第三,每组选出两名同学准备在班内交流。开始活动!

【评析:当学生发现了对“小数乘法”这个新知识还不理解时,就会产生求知的渴望,都希望自己成为“探索者”,把做题的方法弄个明白,于是他们就会去思考、去联系自己已有的知识和经验来寻求答案。在这个过程中,学生已有的知识就象种子一样,生长成新的知识,并且这些新知识的“根”就扎在自己已有的知识和经验这片“沃土”上。】

3、交流方法:

师:哪位同学向代表你们小组来交流?

第一种:连加

生1:我们小组是这样做的:58。6+58。6+58。6+58。6+58。6+58。6= 351、6我们的做法怎么样?

生2:我觉得有些麻烦,如果乘300多,你是不是就把300多个58。6相加啊?

师:确实太麻烦了。你不但理解了他们的方法,而且还有了更深入的分析。不过,这个小组小数乘法不会做,就想到用小数加法来解决,也动脑思考了!

【评析:“交流”不仅仅意味着让学生讲出不同的算法给他人听,更要在理解他人的算法中做出分析和判断,达到互相沟通的目的。我们在这里看到了学生之间真正的交流、真正的沟通,我们还听到教师的评价不但对生2的质疑予以了肯定,同时也表扬了生1开动脑筋努力探索的解题方法。】

第二种:先×10,后÷10

师:还有哪个组想交流?(指生交流)咱们注意听,有疑问就问!

生1:×10就是把58。6变成586,按照586×6算出结果,还要再把得数÷10,这就能得到58。6×6的积。

师:对于这种方法,你能不能提出自己的疑问?

生2:你们为什么要先×10,最后又÷10?

师:你的问题很有价值,看来你是用心思考了。

生1:(做了一个形象的比喻)这就象我们小组加减分一样,早晨加了一分,可又被一位同学扣掉一分,互相抵消了,既没加也没减。

师:多形象的比喻!这样解释明白吗?还有问题吗?

生3:为什么要把58。6×10变成586?

生1:58。6×6不会做,变成586×6,这是整数乘法,我们熟悉、好算!

生3:噢!明白了!

师:真是个好主意!这个方法很巧妙。你们组不但会思考,而且能很好的表达出自己的想法。

【评析:“学贵生疑”。“能不能提出自己的疑问?”,“还有问题吗?”——教会学生善于质疑问难,为实现生生互动创造基础。同时将这些问题直接抛给了学生,拓展了学生与学生直接交流的空间,让学生与学生直接对话。】

第三种:58×6+0.6×6

师:你们小组有什么好方法?

生1:我们把58.6分成58和0。6两部份,分别和6相乘:58×6=348 0.6×6=3、6 3、6+348=351、6

师:大家明白了他们的方法吗?谁来说说他们是怎样想的?

(生2把这种方法又介绍了一遍)

师:你知道为什么0。6×6得3.6,他们怎么算的?

生2:6×6=36,0.6×6=3.6。

师:哦!也是把0。6看成整数来计算!

【评析:学生的交流让其知无不言,言无不尽。他们从同学身上学到的许多东西是教科书上所没有的。】

第四种:竖式

师:还有不同的方法吗?来看看你们小组的方法!

生1:我们列了一个竖式。遮住小数点,不看。直接算586×6=3516,最后把小数点加上去。

师:注意到没有,他刚才做了一个很形象的动作是什么?

生2:遮住小数点!

师:哎!把小数点遮住,他们先算什么?

生3:586×6

师:这个小组也是先把小数变成整数来做的。

【评析:“遮住”虽然学生的语言是稚嫩的,但不难发现,学生对小数乘法的算法更接近了转化的思想。教师就是要做一个发现者,随时注意学生所传达出来的信息,适时点拨,点燃学生想说、想表现的欲望。】

师:(把第二种方法和最后一种方法同时展示,进行对比分析。)哎?那大家看一下,这两个小组的解体思路就是不谋而合的?

生:(恍然大悟)都是变成整数来计算的。

师:(指一生)来!咱俩一起合作!把你们思考的过程记录下来。

他们都是,先把58.6扩大到原来的10倍成为586。

再用586和6相乘得到3516,3516是谁的得数?

怎样才能得到原来58.6×6的积呢?

生:把3516再缩小到原来的1/10

师:这句话很重要我把它记下来。

小数点点在哪?

生:点在6的前面。

师:这个小数点可不是随便点上去的。是把3516缩小到原来的1/10,小数点向左移动一位。这就得到了351.6

(指生完整的介绍一遍竖式方法的思路。)

【评析:在这里,你不但看到了多种观点的分享、沟通和理解,更多的是多种观点的分析、比较、归纳和整合的互动过程,最终在教师的引导下,学生对小数乘法的计算方法有了更深刻理解。】

4、总结思想

师:多清晰的思路!同学们,你知道吗?刚才咱们在这整个的研究过程中,不知不觉地运用了一种很重要的数学方法——转化:把不熟悉的小数乘法转化成小数加法,或者转化成整数乘法来计算。在以后的学习中,我们还会用到这种方法,把新问题转化成我们旧知识来解决。

【评析:思想是数学的灵魂。方法如果没有思想的引领,方法也只能是一种笨拙的工具。在此,学生在经历了一个数学家发现的过程后,感受到了比数学知识更重要的“转化”的数学思想方法。】

师:这是我们思考的过程,实际计算时不用写出来。只需像这样列竖式计算。

四:巩固练习

师:我这里还有一道题,你会算吗?13、2×4

学生独立完成,找一名同学讲讲计算过程!后同桌互相检查看看对不对!

师:再看这个问题,“26台发电机组每小时发电多少万千瓦时?”列出算式!观察这个算式与上面的有什么不同?

生:刚才我们做的是小数乘一位整数,这是小数乘两位整数。

师:试试看!写在题板上。如果有问题可以和同桌商量一下!

师:(出示错题)刚才,老师发现有位同学是这样做的!你对他的计算过程有什么看法?

生:因为这次是乘两位整数,其实这都是计算过程,都要按照整数乘法计算,不用点小数点。到了最后的结果我们再缩小到原来的1/10。

师:其实呀!我们还要好好感谢这位同学,给我们提了个醒。如果还有错的也不要着急。就像这样,先仔细找找原因,再改过来!

【评析:理解小数乘整数的算理及算法是难点,学生出错很正常。老师抓住学生出现的错误,让学生通过交流找到错误原因,再次感受知识的形成过程。】

师生共同归纳:计算一位小数乘整数时,先把一位小数扩大到原来的10倍,转化成整数,按照整数乘法的方法来计算,然后把结果缩小到原来得1/10,就得到最后的得数。

五、实际应用:

师:小数乘法在生活中的作用很大。最后老师还给同学们带来一段有趣的小故事,一起来看!

(故事内容:老爷爷在卖苹果,1、5元一斤。小姑娘过来讲价:“太贵了,5元钱3斤卖不卖?”,老爷爷说:“不卖!不卖!”)

师:看到有的同学笑了,能不能说说你笑什么?

生1:3斤只有4、5元。如果卖5元钱3斤能多赚5角,老爷爷居然还不卖!

生2:小姑娘不会讲价,5元钱3斤,越讲越高!哪有这样讲价的?

师:看来不学会小数乘法的知识是不行的。刚才大家都认为老爷爷傻,其实呀,换一个角度想,老爷爷可能并不傻,他不贪图眼前的小利,讲究的是诚信经营。

【评析:摆脱了唯知识的教学,才是以人为本的教学。小故事在本节课里起到了联系实际,重视应用的作用。最后那句平时无华的话,拥有着一种大教学的观念,为学生形成正确的世界观、人生观铺垫着点滴基础。可以想象,学生在这样辩证思想的长期熏陶下,他们学会从不同的角度思考问题,就会获得不一样的收获。同时,认识世界、评价他人时不会那么狭隘。】

师:这节课,还有几个有关小数乘法的问题,以后继续研究。今天咱们就上到这儿!下课!

四年级数学乘法教学设计6

一、教学内容

人教版新课标教材小学数学四年级下册33页-35页内容,《乘法运算定律》第一课时。

二、教学目标

⑴学生经历乘法交换律和结合律的总结过程,感知“猜想----验证”这一总结规律的方法。

⑵学生理解掌握乘法交换律和结合律,会用不同方式表示运算定律,以及利用运算定律解决简单的问题。

⑶学生感受解决问题的过程和策略,提高解决问题能力。对数学有新的理解和认识。

三、教学重点

学生理解掌握乘法交换律和结合律,会用不同方式表示运算定律,以及利用运算定律解决简单的问题。

四、教学难点

学生经历乘法交换律和结合律的总结过程,感知“猜想----验证”这一总结规律的方法。

五、教法和学法

由于本节课教学内容具有较强的问题性和可探究性,所以,我采用了以组织探究学习活动为主的教学策略。力求在通过“猜想----验证”的方式总结运算定律的同时,培养学生解决问题的意识和能力。

六、教学过程

(一)创设情境,呈现问题;

“同学们,你们知道3月12日是什么日子吗?”

说一说植树有什么好处吗?

今天这节课,我们就通过解决与植树有关的问题去发现、总结乘法中的运算定律。

(二)猜想验证,总结规律;

1、引导为主探索乘法交换律

⑴提出猜想

(出示主题图)“请同学们仔细观察图上的数学信息,你能提出一个用一步乘法解决的数学问题吗? ”(学生提,师板书)

“你们还有不一样的算式吗?”(板书两个算式。)

“同样的问题我们列出了两个不同的算式,但结果是一样的。那我们可以说25×4=4×25。”(板书算式)

观察这个算式,用自己的话说一说你发现了什么?

“通过这样一个式子,我们发现两个因数交换位置,积不变。那么,我们只是提出了一个猜想,这个规律能否试用于所有的乘法呢?我们还需要进一步的验证。

⑵验证猜想

说一说,你们打算怎样验证这个规律呢?

⑶得出结论

汇报。

小结:通过刚才的猜想、验证,可以证实我们发现的规律不是偶然的,它可以应用于所有的乘法。

(板书:乘法交换律)

“你们能用字母来表示乘法交换律吗?”

⑷小结:我们已经探索出了乘法交换律。请同学们回忆一下,刚才我们是按怎样的过程总结出乘法交换律的呢?

引导学生回答:先解决实际问题——发现规律——猜想——举例验证——得出结论

2、自主探索乘法结合律

按《友情提示单》自主探究学习。

(1) 提出活动要求。

(2) 学生活动。

(3) 汇报总结并板书。

(4) 用字母表示乘法结合律并板书。

三、巩固应用,拓展总结

(一)基本练习

1、书后做一做第1题

2、你根据乘法运算定律,猜一猜小猫背后的数。37页2题(猜数、说说用了哪条运算定律。)

(二) 综合练习

课件出示小精灵的问题,说说你们的发现。(交流、汇报)

小结:交换律是两个数相加交换位置、两个数相乘交换位置的规律。结合律是三个数相加、或三个数相乘,改变运算顺序的规律。

(三)拓展练习

完成做一做第2题。

1.提出一个用两步乘法计算的数学问题并独立解决?

2.汇报

小结:计算三个数相乘时,乘积是整十、整百、整千的数先相乘,这样计算简便。

四、课堂小结

回忆一下这节课内容,说说你有什么收获?(重点说你学会了什么?怎么得到的和怎么发现的。)

四年级数学乘法教学设计7

教学目标:

1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。

2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学重难点:

发现并理解乘法分配律。

教学准备:挂图、小黑板。

教学流程:

一、创设情境,导入新课。

师生谈话,引入主题图:老师准备为参加学校排球操比赛的五位同学去购买衣服。

看看买什么衣服好看呢。

二、自主探索,合作交流。

1.出示:买5件夹克衫和5条裤子,一共要付多少元?

师问你打算怎样算?

生口答师板书:

(65+45)×565×5+45×5

请学生分别说清两道算式的含义。

2.师问猜想一下,这两道算式的结果会怎样?

要验证我们的算式是否正确,应该用什么方法?

生计算,个别板演。

证明这两道算式的结果是相等的。

中间应用“=”接连。

3.生读算式(65+45)×5=65×5+45×5

师问等号两边的算式有什么相同和不同?

生同桌说一说,并汇报。

4.这两道算式相等是一种巧合还是有规律的呢?

出示:(2+10)×6=2×6+10×6

(5+6)×3=5×3+6×3

师问中间可以用“=”来连接吗?

5.小组讨论:这三组等式左边有什么特点?

右边有什么特点?

生汇报。

6.师问你能写出具有这样规律的等式吗?

生独立写一写,个别板书。

7.师问你能想出一道等式,可以把我们今天学习的所有具有这种规律的等式都包括在内吗?

生写一写,个别板演。

8.揭题:乘法分配律

(a+b)×c=a×c+b×c

9.师总结两个数的和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。

三、巩固练习,拓展应用。

想想做做:

1.在口里填上合适的数,在○里填上运算符号。

(42+35)×2=42×口+35×口

27×12+43×12=(27+口)×口

15×26+15×14=口○(口○口)

72×(30+6)=口○口○口○口

强调:乘法分配律,可以正着用,也可以反着用。

2.横着看,在得数相同的两个算式后面画“√”

(28+16)×728×7+16×7

15×39+45×39(15+45)×39

74×(20+1)74×20+74

40×50+50×9040×(50+90)

3.算一算,比一比,每组中哪一道题的计算比较简便。

(1)64×8+36×825×17+25×3

(64+36)×825×(17+3)

让学生体会乘法分配律可以使计算简便。

4.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。

生独立完成并汇报。

5.你能根据下图列出两

道综合算式吗?

上面的两道算式能组成一个等式吗?

四、全课小结

师问今天你有什么收获?和你的小伙伴说一说。

五、课堂作业

《补充习题》第26页。

四年级数学乘法教学设计8

乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个

购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。

教学内容:教材第54~55页例题,完成“做一做”。

教学目标:

1、让学生在解决实际问题的过程中发现乘法分配律;通过计算说理,理解乘法分配律。

2、让学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3、培养学生联系现实问题主动参与探索、发现和概括规律的学习态度,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功

感,增强学习的兴趣和自信。

教学重、难点:

发现并理解乘法分配律。

教具准备:

多媒体课件一套。

教学过程

一、创设问题情境

谈话:这学期,我们学校鼓号队又增加了新成员,辅导员柳老师正在为他们准备服装呢!(课件出示商店场景)

二、展开探索过程

1、初步感知。

提问:仔细观察,从图中你获得了哪些信息?

学生列式后交流反馈解题思路,并借助图形加深学生对两种解题思路的体会。

提问:猜一猜,这两种方法的计算结果会怎么样?

计算验证:算一算,来证明你的猜想是正确的。

板书等式:(30+25)x4=30x4+25x4

2、类比展开。

(1)出示图形,让学生说说你想到了什么?你能用两种方法求出6套衣服一共要付多少元吗?板书:(30+25)x6=30x6+25x6

(2)除了把长方形看成上衣,梯形看成裤子,把它们看成6套衣服,还可以看成什么?

要求6套课桌椅多少元,你准备怎么解决?

板书:(100+60)x6=100x6+60x6

3、体验感悟。

(1)类似这样的等式还有吗?你能写出第4组吗?

学生举例后,挑3组板书。

(2)提问:这3组算式相等吗?怎么证明?(计算、乘法的意义)

同桌互相检查刚才写的算式是否相等。

(3)交流:介绍你写成功的经验

引导:你是怎么根据左边的算式写出右边的算式的?

4、提示规律。

(1)提问:像这样的等式能写完吗?

(2)用自己喜欢的方式表达所发现的规律,在小组里交流。展示。

板书:(a+b)xc=axc+bxc

(3)板书:乘法分配律

让学生用自己的语言说说这个字母式子表示什么,师小结。

三、巩固内化

1、在□里填上合适的数,在○里填上运算符号。

(42+35)×2=42×□+35×□

27×12+43×12=(27+□)×□

15×26+15×14=□○(□○□)

学生独立填写,指名报答案,全班共同校对。指出后两题是乘法分配律的逆向应用。

出示:72x(30+6)= 齐说答案。

出示:(25-12)x4= 可能等于什么?怎样才能确认?你能联想到什么?小结

2、横着看,在得数相同的两个算式后面画“√”。

(48+52)×13 48×13+52×13 □

40×5+2×5 5×(40+2) □

75×(19+1) 75×19+75 □

40×50+50×90 40×(50+90) □

27×(16+30) 27×16+30 □

独立完成,小组讨论为什么有的是相同的,有的是不相同的。指名报答案,说说第三组两道算式为什么是相等的?第四组的两道算式为什么不相等?怎样改一下能使它们相等?

出示打“√”的算式,如果让你计算的话,你更愿意计算哪边的式子呢?为什么?小结:有时应用乘法分配律可以使计算简便。

四、总结回顾

通过今天这节课的学习,你有什么收获?

五、布置作业

1、必做题:想想做做第5题。

2、选做题:如果把乘法分配律中“两个数的和”换成“3个数的和”、“4个数的和”或“更多个数的和”,结果还会不会不变?用合适的方试着进行验证。

四年级数学乘法教学设计9

教学目标

1、知识与技能:引导学生探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。

2、过程与方法:通过学生猜想, 观察、比较、概括、联想等方法,使学生理解并掌握乘法的交换律和结合律,培养学生的分析推理能力,发展思维的灵活性。

3、情感态度与价值观:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学重点:学生发现乘法交换律和结合律的过程

教学难点: 验证乘法交换律和结合律的过程,能用自己的语言描述乘法交换律和乘法结合律,并会用字母表示。

教学过程:

一、创设情境,生成问题

1、我们学习了哪些运算定律?谁能说一说?什么是加法交换律,用字母应该怎样表示?加法结合律呢?

a+b=b+a (a+b)+c=a+(b+c)

2、引入新课:同学们猜一猜:这是我们学习的加法交换律和加法结合律,那么乘法可能有哪些运算定律呢?

二、自主探究、验证猜想

1、验证乘法的交换律

同学们到底猜得对不对呢,这就需要我们来验证

保护环境对人类非常重要,植树是一件非常有意义的事,瞧,小明和他的小伙伴们正在植树呢(出示例5主题图)。

(1)、请同学们仔细观察主题图。从图上你发现了哪些数学信息?

(2)、根据这些数学信息你能提出哪些数学问题?

(3)、小组讨论,指名汇报并解答

a 、负责挖坑、种树的共有多少人?

25×4=100(人)4×25=100(人)

探究、发现问题:

教师提问:4×25和25×4得数是否相等?都表示什么?两个算式之间可以用什么符号连接?(引导学生回答,明确:4×25=25×4) b 、负责抬水、浇树的共有多少人?

25×2=50(人)2×25=50(人)

仔细观察这两人个算式,你发现了什么?

C 、每组要浇多少桶水?

5×2=10(桶)2×5=10(桶)

仔细观察这两人个算式,你发现了什么?

(4)、仔细观察这几组算式,你有什么发现?学生谈发现.

25×4=4×25

25×2=2×25

5×2=2×5

(5) 、请学生用自己的话来叙述发现的规律?(师根据学生的回答进行汇总)

两个数相乘,交换两个因数的位置,积不变,这叫做乘法交换律。这就验证了同学们的猜想,乘法确实有交换律。

(6)、你能用自己喜欢的方式表示出乘法的交换律吗?(学生独立完成,指名汇报)

甲数×乙数=乙数×甲数

× = ×

a × b = b × a

(7)、你最喜欢哪一种?

(8)、其实乘法交换律在我们以前就用到过,同学们回忆一下在哪些地方用过(学生思考后回答),再次证明交换两人个因数的位置积不变。

2、验证乘法结合律

刚才我们通过自己提出问题,解决问题,发现了乘法交换律确实存在,那乘法结合律是不是也真的存在呢,接下来我们自己举例验证

(1)、学生自己举例,小组交流,初步验证乘法结合律

(2)、指名汇报.

(8×4) ×5= 8×(4×5)

(5×2) ×3= 5×(2×3)

(25×4) ×1= 25×(4×1)

(3)、仔细观察这几组算式,你有什么发现?学生谈发现.

(4)、刚才同学们通过举例来初步验证了乘法结合律的存在,老师也用了一道应用题来进行验证,再次验证乘法的结合律。

a 、出示例6

b 、学生理解题意,找出已知条件和所求问题。

c 、你能用不同的方法解答吗?学生独立列式

(25×5)×2 25×(5×2)

=25×10 =125×2

=250(桶) =250(桶)

d 、仔细观察这组算式,你有什么发现?学生谈发现.

(25×5)×2 = 25×(5×2)

(5)、通过刚才解决这道题,我们再一次验证了乘法结合律的存在,什么叫做乘法的结合律呢?

三个数相乘,先乘前两个数,或者先乘后两个数,它们的积不变,这叫做乘法结合律。

(6)、你能用字母表示出乘法结合律吗?

3、比较加法交换律和乘法交换律,加法结合律和乘法结合律,你有什么发现(学生仔细观察,谈发现)

三、巩固与练习。

1、填空。

12×32=32×( )

108×75=( )×( )

60×( )=8×( )

25×( )=( )×25

30×6×7=30×(6× )

125×(8×40)=( × ) ×( )

2、你能很快算出每组气球上三个数的积吗?

3、你能用简便方法计算吗?

23×15×2 5 ×37×2

492×5×2 25×166×4

8×5×125×40

五、小结。

这节课学习了什么内容,你有哪些收获?

六、作业布置。教材27页的第2、3题。

因篇幅问题不能全部显示,请点此查看更多更全内容