您的当前位置:首页正文

用R语言进行简单线性回归分析,数据出自何晓群

2024-10-18 来源:威能网


用R语言进行简单线性回归分析,数据出自何晓群--应用回归分析,语言如下所示:

x y

3.4 26.2

1.8 17.8

4.6 31.3

2.3 23.1

3.1 27.5

5.5 36

0.7 14.1

3 22.3

2.6 19.6

4.3 31.3

2.1 24

1.1 17.3

6.1 43.2

4.8 36.4

3.8 26.1

#-------------------------------------------------------------#数据准备

fire <- read.table('D:/fire.txt', head = T)

#-------------------------------------------------------------#回归分析

plot(fire$y ~ fire$x)

fire.reg <- lm(fire$y ~ fire$x, data = fire) #回归拟合

summary(fire.reg) #回归分析表

anova(fire.reg) #方差分析表

abline(fire.reg, col = 2, lty = 2) #拟合直线

#-------------------------------------------------------------#残差分析

fire.res <- residuals(fire.reg) #残差

fire.sre <- rstandard(fire.reg) #学生化残差

plot(fire.sre)

abline(h = 0)

text(11, fire.sre[11], label = 11, adj = (-0.3), col = 2) #标注点

#-------------------------------------------------------------#预测与控制

attach(fire) #连接

fire.reg <- lm(y ~ x) #这种回归拟合简单

fire.points <- data.frame(x = c(3.5, 4))

fire.pred <- predict(fire.reg, fire.points, interval = 'prediction', level = 0.95) #预测:置信区间

fire.pred

detach(fire) #取消连接

-------------------------------------------------------------------------------------

-------------

#附自编的过程程序:(R最大的好处是可以自己编想要的程序和函数,尤其没有内置函数的时候)

fire <- read.table('D:/fire.txt', head = T)

attach(fire)

--------------------------------------------

lxy <- function(x){

sum <- 0

sum0 <- 0

for(i in 1:length(x)){

sum0 <- (x[i] - mean(x)) * (y[i]-mean(y))

sum <- sum + sum0}

sum}

---------------------------------------------------------------------------------

#用这个就不需要循环了

lxy <- function(x){

mid <- (x - mean(x)) * (y-mean(y))

sum <- sum(mid)

sum}

#对于数据框、列表等数据对象要善用apply()函数。

---------------------------------------------------------------------------------

lxx <- function(x){

sum <- 0

sum0 <- 0

for(i in 1:length(x)){

sum0 <- (x[i] - mean(x))^2

sum <- sum + sum0}

sum}

Lxx <- lxx(x)

Lyy <- lxx(y)

Lxy <- lxy(x)

b1 <- Lxy / Lxx; b1 #回归系数斜率

b0 <- mean(y) - b1 * mean(x); b0 #回归系数截距

residu <- y - (b0 + b1*x); residu #残差

r <- Lxy / sqrt(Lxx * Lyy); r #相关系数

rsqure <- r^2; rsqure #决定系数

adrsqure <- 1 - ((length(x)-1)/(length(x)-2))*(1-r^2) #调整后的决定系数

----------------------------------------------------------------------------------

esrequre <- function(x){ #求标准差平方估计值

sum <- 0

sum0 <- 0

for(i in 1:length(x)){

sum0 <- residu[i]^2

sum <- sum + sum0}

residusqure <- sum/(length(x)-2)

residusqure}

esterreq <- esrequre(x); esterreq #标准差平方估计值(MSE)

ester <- sqrt(esrequre(x)); ester #标准差估计值(回归分析表给出的标准误差)

val_t <- b1*sqrt(Lxx) / ester; val_t #检验回归系数斜率b1的t值

SSe <- function(x){ #求残差平方和

sum <- 0

sum0 <- 0

for(i in 1:length(x)){

sum0 <- residu[i]^2

sum <- sum + sum0}

sum}

SSE <- SSe(x); SSE #残差平方和

MSE <- SSE/(length(x)-2); MSE #残差均方和

SSr <- function(x){

sum <- 0

sum0 <- 0

for(i in 1:length(x)){

sum0 <- ((b0 + b1*x[i]) - mean(y))^2

sum <- sum + sum0}

sum}

SSR <- SSr(x); SSR #回归平方和

MSR <- SSR/1; MSR #回归均方和

val_F <- SSR / MSE; val_F #检验回归方程F值

hi <- 1/length(x) + (x-mean(x))^2/Lxx #杠杆值

ZRE <- residu / ester; ZRE #标准化残差

SRE <- residu/(ester*sqrt(1-hi)); SRE #学生化残差

Y <- function(x){b0 + b1 * x} #点估计

Y(3.5)

因篇幅问题不能全部显示,请点此查看更多更全内容