现代电子技术的发展历程及应用
摘要:电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。电力电子技术作为一门高技术学科,由于其在节能、减小环境污染、改善工作条件等方面有着重要的作用,现在已广泛的应用于传统工业(例如:电力、机械、交通、化工、冶金、轻纺等)和高新技术产业。
关键词:电子技术;能源;功率;智能;发展
一、电力电子器件的发展水平
电力电子技术是利用电力电子器件对电能进行控制和转换的学科。它包括电力电子器件、变流电路和控制电路三个部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。
优化电能使用。通过电力电子技术对电能的处理,使电能的使用达到合理、高效和节约,实现了电能使用最佳化。例如,在节电方面,针对风机水泵、电力牵引、轧机冶炼、轻工造纸、工业窑炉、感应加热、电焊、化工、电解等14个方面的调查,潜在节电总量相
当于1990年全国发电量的16%,所以推广应用电力电子技术是节能的一项战略措施,一般节能效果可达10%-40%,我国已将许多装置列入节能的推广应用项目。
1、 改造传统产业和发展机电一体化等新兴产业。据发达国家预测,今后将有95%的电能要经电力电子技术处理后再使用,即工业和民用的各种机电设备中,有95%与电力电子产业有关,特别是,电力电子技术是弱电控制强电的媒体,是机电设备与计算机之间的重要接口,它为传统产业和新兴产业采用微电子技术创造了条件,成为发挥计算机作用的保证和基础。
2、 电力电子技术高频化和变频技术的发展,将使机电设备突破工频传统,向高频化方向发展。实现最佳工作效率,将使机电设备的体积减小几倍、几十倍,响应速度达到高速化,并能适应任何基准信号,实现无噪音且具有全新的功能和用途。
3、 4、电力电子智能化的进展,在一定程度上将信息处理与功率处理合一,使微电子技术与电力电子技术一体化,其发展有可能引起电子技术的重大改革。有人甚至提出,电子学的下一项革命将发生在以工业设备和电网为对象的电子技术应用领域,电力电子技术将把人们带到第二次电子革命的边缘。随着晶闸管应用的推广,开发出许多电力电子电路,按其功能可分为:①将交流电能转换成直流电能的整流电路;②将直流电能转换成交流电能的逆变电路;③将一种形式的交流电能转换成另一种形式的交流电能的交流变换电路;④将一种形式的直流电能转换成另一种形式的直流电能的直流变换电路。这些电路都包含晶闸管,而每个晶闸管都需要相应的触发器。
从20世纪50年代中到70年代末,以大功率硅二极管、双极型功率晶体管和晶闸管应用为基础(尤其是晶闸管)的电力电子技术发展比较成熟。70年代末以来,两个方面的发展对电力电子技术引起了巨大的冲击。其一为微机的发展对电力电子装置的控制系统、
故障检测、信息处理等起了重大作用,今后还将继续发展;其二为微电子技术、光纤技术等渗透到电力电子器件中,开发出更多的新一代电力电子器件。随着光纤技术的发展,美国和日本于相继研制成光控晶闸管并用于直流输电系统,这种光控管与电触发的晶闸管相比,简化了触发电路,提高了绝缘水平和抗干扰能力,可使变流设备向小型、轻量方向发展,既降低了造价,又提高运行的可靠性。这些新器件均具有门极关断能力,且工作频率可以大大提高,使电力电子电路更加简单,使电力电子装置的体积、重量、效率、性能等各方面指标不断提高,它将使电力电子技术发展到一个更新的阶段。与此同时,电力电子器件、电力电子电路和电力电子装置的计算机模拟和仿真技术也在不断发展。
二、电子技术的具体应用方向
1、在高压直流输电(HVDC)方面的应用
直流输电在技术方面有许多优点:
(1)不存在系统稳定问题,可实现电网的非同期互联;(2)可以限制短路电流;(3)没有电容充电电流;(4)线路有功损耗小;(5)输送相同功率时,线路造价低;(6)调节速度快,运行可靠;(7)适宜于海下输电。随着大功率电子器件开断能力不断提高,新的大功率电力电子器件的出现和投入应用,高压直流输电设备的性能必将进一步得以改善,设备结构得以简化,从而减少换流站的占地面积、降低工程造价。
2、在柔性交流输电系统(FACTS)中的应用
近年来柔性交流输电技术在世界上发展迅速,已被国内外一些权威预测确定为未来输电系统新时代的三项支持技术(柔性输电技术、先进的控制中心技术和综合自动化技术)之
一。现代电力电子技术、控制理论和通讯技术的发展为FACTS的发展提供了条件。采用IGBT等可关断器件组成的FACTS元件可以快速、平滑地调节系统参数,从而灵活、迅速地改变系统的潮流分布。
3、电力谐波治理方面的应用
有源滤波是治理日益严重的电力系统谐波的最理想方法之一。有源滤波器的概念最早是在20世纪70年代初提出来的,即利用可控的功率半导体器件向电网注入与原有谐波电流幅值相等、相位相反的电流,使电源的总谐波电流为零,从而实现实时补偿谐波电流的目的。随着中国电能质量治理工作的深入开展,使用以瞬时无功功率理论为理论基础的有源滤波器进行谐波治理将会有巨大的市场潜力。
4、不间断电源(UPS)中的应用
UPS紧急供电系统是电力自动化系统安全可靠运行的根本保证,是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。现代UPS普遍采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,降低了电源的噪声,提高了效率和可靠性。
电力电子技术拥有许多微电子技术所具有的特征,发展迅速、渗透力强、生命力旺盛,并且能与其它学科相互融合和相互发展。电力电子技术已迅速发展成为一门独立的技术、学科领域,它的应用领域几乎涉及到国民经济的各个工业部门,毫无疑问,它将成为新世纪的关键支撑技术之一。
参考文献:
[1]彭文邦,于虹,钱国超,李亚宁.看电子技术的发展趋势分析[J].云南电力技术.2016(03)
[2] 张智,赵福群.全固态有机太阳能电池中电子技术的应用[J].化学通报.2005(11)
[3] 许晓雄,邱志军,官亦标.供电系统中电子技术的研究现状与展望[J].储能科学与技术.2013(04)
[4]邓亚锋,钱怡,崔艳华.3D薄膜锂离子电池的续航研究进展[J].材料导报.2012(17)
因篇幅问题不能全部显示,请点此查看更多更全内容