摘要:隧道仰拱开挖施工不慎引起塌方失稳是隧道建设过程中时常发生的安全问题。如何防止隧道塌方,确保隧道建设人员生命及财产安全仍然是我们长期面临的重大问题。本文分析了仰拱开挖易发生失稳塌方的原因,提出了应对措施。
关键词:隧道;仰拱;安全
1 概述
隧道塌方安全事故中,开挖仰拱时发生的隧道失稳塌方是最危险的一种。这种塌方失稳具有规模较大,发生突然的特点,往往直接掩埋仰拱作业人员造成重大人员伤亡,或形成隧道“关门塌方”事故,即仰拱前方掌子面作业人员因塌方阻隔受困在隧道里面等待抢险救援。今年发生的多起铁路隧道安全事故大多发生在仰拱开挖施工中。因此对铁路隧道仰拱施工过程进行力学分析,研究塌方发生的原因,采取有效措施进行安全控制,防止隧道失稳塌方,具有十分重要的意义。
由于我国地质条件的多样性和复杂性,围岩岩土性质及应力变化的复杂性和不确定性,隧道工程仰拱设计施工尚且存在诸多问题。本文针对上述问题,从隧道施工过程力学机理分析人手,详解了目前隧道仰拱施工塌方原因,提出了相应设计施工安全控制关键措施,以供铁路隧道建设各方进行安全管理时参考。
2 仰拱施工过程力学机理分析
隧道施工中,仰拱作为衬砌结构的重要组成部分,对维护隧道整体稳定有着重要的作用。隧道仰拱能明显地提高支护结构的整体刚度,有效地约束围岩的变形,改善整个衬砌的受力状态,并减少隧道结构病害的发生。软弱围岩及不良地质隧道常采用分部开挖、分部支护的方式施工,围岩压力、围岩变形、支护结构内力随着施工动态过程在空间及时间上发生动态变化。从隧道施工过程力学的角度来看,仰拱施工又恰恰是隧道成隧过程中最不利、最危险的时刻,其力学机理如下。
2.1 成隧过程及体系转换
开挖仰拱前,隧道初期支护体系还没有封闭成环,拱墙初期支护抵抗侧向压力以及竖向承载能力均较差。仰拱施工完毕才形成完整闭合的隧道支护,围岩与支护内力重新分布调整,隧道支护体系转换完成。
分部开挖、分部支护的成隧过程,其力学实质是一个对围岩反复卸载、加载的过程。围岩荷载、围岩应力、初期支护内力等将随着应力历史和应力路径的变化,会发生荷载变化、应力重分布、应力集中、应力损伤、塑性区开展及破坏等现象。
以台阶法为例,施工过程数值模拟计算及实践表明,开挖上台阶时,塑性区主要集中在拱脚部位;上台阶开挖支护完毕,开挖下台阶部分后,塑性区范围由上台阶的拱脚处扩展到下台阶拱脚部位,仰拱开挖后塑性区范围进一步扩大。
2.2 最不利状态
仰拱开挖一般是隧道的最后一步开挖,此时,隧道洞室尺寸达到最大值,围岩荷载达到最大值。数值计算及监控量测表明,此时洞周围岩应变、初期支护弯矩轴力等达到最大值,塑性区范围最大,拱脚出现塑性区和应力集中,拱顶下沉、收敛变形量测值急剧增长。当应力增长超过岩体强度,支护与围岩形变超过极限平衡状态时,隧道就会失稳坍塌。
研究表明 ,隧道有仰拱比无仰拱时.周边围岩内塑性区范围减小30% 以上(图1),
,洞周位移特别是拱顶和仰拱部位的位移减小55% 以上,隧道二次衬砌安全系数提高了22% 以上。因此在仰拱开挖后,仰拱初期支护喷射混凝土达到强度前隧道处于最不利的荷载条件。
2.3 时空效应
隧道逐循环向前开挖的施工过程中,荷载的增加取决于开挖面推进速率和喷混凝土刚度增加的速率以及开挖和支护的设置过程。隧道洞室一方面由于开挖而导致围岩变形,同时,也会受未开挖围岩和深部围岩的挟制以及支护的限制作用而趋于稳定。一般认为,隧道的空间效应范围约在(1.5~2)d。
初期支护岩体与时间空间相关的特征以及施工过程如果在隧道支护的设计和施工中未加以考虑和重视,其结果就会造成仰拱开挖面附近的安全问题。
3 仰拱施工塌方原因分析
隧道是建于岩土介质中的结构物,由于岩土介质本身的复杂性以及岩土介质与结构共同作用的不确定性,隧道设计施工判断和措施与实际状态仍然可能存在较大的偏差,隧道仰拱开挖过程中仍然可能出现意外的塌方事故。通过对近年来发生的铁路隧道仰拱开挖塌方事故进行分析,可以总结出以下主要原因。
3.1 初期支护不力。导致仰拱施工时结构失稳
初期支护不力,不能有效抑制和平衡围岩变形,仰拱开挖后就会发生塌方。塌方的原因可能是设计措施不强,也有可能是施工措施不力。
当前设计通行的隧道结构设计计算,一般采用荷载结构模型,平面杆系有限元法。支护参数的确定以工程类比为主,辅以结构数值分析检算。计算时,初期支护为主要承载结构。ⅱ ~ⅲ级围岩二次衬砌作为安全储备,按承受围岩荷载的30% 检算,ⅳ 一v级围岩二次衬砌作为承载结构,分别按承受围岩荷载的50% ~70%检算,得出荷载与结构安全系数、配筋量关系曲线,并与工程类比法相互佐证,合理确定参数值,计算中考虑仰拱与衬砌共同作用。
隧道工程与一般地面结构在力学机制上不同,由于岩体初始应力不易确定、岩体材料非均质非线性各向异性、岩体力学参数难以准确获取、岩体与开挖支护相互作用的不确定性等特点,在实际隧道设计过程中,如果支护设计参数采用工程类比或套用规范、通用图,如果设计分析检算采用对完整隧道一次性平面模型计算,当围岩与实际状态存在较大的差异时,通常就会在仰拱开挖这个最不利环节发生塌方。其原因可用收敛约束原理解释(图2)。
当然,如果施工过程中偷工减料,出现钢架与围岩不密贴等质量缺陷,初期支护刚度由于施工质量不能达到设计要求,通常也会在仰拱开挖时结构安全系数急剧下降而发生整体隧道失稳塌方。
3.2 忽视上部结构变形对下部施工的影响
支护压力是隧道收敛闭合的函数,监控量测可以反馈围岩和初期支护结构动态,通过量测数据优化支护参数,保证施工安全。施工中,上下台阶开挖支护后,围岩支护变形应该进入基本稳定状态,荷载位移达到稳定值,仰拱开挖后,支护结构在一定时间内尚能保持稳定或平衡。这时,仰拱施工才会安全。
如果仰拱开挖时,拱墙变形不稳定或刚刚处于极限平衡状态,此时开挖仰拱必然会导致结构安全系数不足,隧道整体失稳塌方。
3.3 未及时调整施工步距和措施
隧道工程成败的关键在于设计和施工人员依据围岩地质状况,正确判断,选用合适的支护系统和开挖方式,并不断根据监控量测信息进行支护修正和工法改良。
即使上下台阶断面开挖支护时围岩应力状态保持平衡状态,如果仰拱一次开挖长度过长,开挖处纵横向空间“桥冠”作用减弱消失,围岩应力迅速重分布,初期支护变形急剧增加,导致仰拱开挖段的初期支护先发生破坏,接着带动两侧支护一起破坏而发生严重塌方事故。
3.4 施工组织不合理、施工管理不到位
隧道安全事故发生可划分为三个层次:一是由于自然的复杂性人们没有正确的认识;二是认识了,没做好,能力有限;三是无知者无畏,不按规程、规范和作业指南施工。施工组织不合理、施工管理不到位,当隧道施工碰到较差的地质条件,在最不利的环节,出现塌方事故的概率就迅速增大。
4 设计施工控制关键技术
由于地下工程岩体具有非均质、各向异性及非连续的特性,所以采用连续体力学计算时,由于其假设条件与实际岩体不符,因而其计算结果往往是隧道拱、墙、顶、底均匀变形。而非连续体数值模拟结果与工程实践均证实,地下工程开挖后,地下工程围岩位移量并不是均匀的,而是首先从地下工程某一个或者某几个部位开始位移破坏,从而导致整个地下工程支护体失稳,这些首先破坏的部位就是支护的“关键部位”。进行隧道仰拱施工安全控制应做好以下关键方面工作。
因篇幅问题不能全部显示,请点此查看更多更全内容