一、选择题
1. 已知函数f(x)=2ax3﹣3x2+1,若 f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( ) A.(1,+∞) B.(0,1) C.(﹣1,0)
D.(﹣∞,﹣1)
2. 函数f(x)=
,则f(﹣1)的值为( )
A.1 B.2 C.3 D.4
3. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为(
A. B.(4+π) C. D.
4. 已知双曲线(a>0,b>0)的一条渐近线方程为,则双曲线的离心率为( A.
B.
C.
D.
5. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )
A.{, } B.{,, } C.{V|≤V≤} D.{V|0<V≤}
第 1 页,共 19 页
)
)
6. 已知集合M{x|2x25x0,xZ},N{0,a},若MN,则a( ) A.1 B. C.1或 D.1或2 7. 抛物线y=﹣8x2的准线方程是( ) A.y=
8. 如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为(﹣
),∠AOC=α,若|BC|=1,则
cos2
﹣sin
cos
﹣
的值为( )
,
B.y=2 C.x=
D.y=﹣2
A. B. C.﹣ D.﹣
9. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( ) A.
B.
C.
D. =0.08x+1.23
10.在△ABC中,角A,B,C所对的边分别为a,b,c,若面积的最大值为4A.等腰三角形
,则此时△ABC的形状为( ) B.正三角形 C.直角三角形
(acosB+bcosA)=2csinC,a+b=8,且△ABC的
D.钝角三角形
11.已知直线l⊥平面α,直线m⊂平面β,有下面四个命题: (1)α∥β⇒l⊥m,(2)α⊥β⇒l∥m, (3)l∥m⇒α⊥β,(4)l⊥m⇒α∥β, 其中正确命题是( )
A.(1)与(2) B.(1)与(3) C.(2)与(4) D.(3)与(4)
12.lgx,lgy,lgz成等差数列是由y2=zx成立的( ) A.充分非必要条件
B.必要非充分条件
C.充要条件 D.既不充分也不必要条件
第 2 页,共 19 页
二、填空题
13.设MP和OM分别是角
的正弦线和余弦线,则给出的以下不等式:
①MP<OM<0;②OM<0<MP;③OM<MP<0;④MP<0<OM, 其中正确的是 (把所有正确的序号都填上). 14.幂函数f(x)(m23m3)xm15.函数f(x)=
22m1在区间0,上是增函数,则m .
(x>3)的最小值为 .
16.已知条件p:{x||x﹣a|<3},条件q:{x|x2﹣2x﹣3<0},且q是p的充分不必要条件,则a的取值范围是 .
2
317.【南通中学2018届高三10月月考】已知函数fxx2x,若曲线fx在点1,f1处的切线经2过圆C:xya2的圆心,则实数a的值为__________.
18.如图,△ABC是直角三角形,∠ACB=90°,PA⊥平面ABC,此图形中有 个直角三角形.
三、解答题
19.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点. (1)若x0=﹣4,y0=1,求圆M的方程;
(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.
第 3 页,共 19 页
20.∠ABC=如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,M为OA的中点,N为BC的中点. (Ⅰ)证明:直线MN∥平面OCD; (Ⅱ)求异面直线AB与MD所成角的大小; (Ⅲ)求点B到平面OCD的距离.
OA⊥底面ABCD,OA=2,,
21.(本小题满分10分)选修4-1:几何证明选讲1111]
如图,点C为圆O上一点,CP为圆的切线,CE为圆的直径,CP3.
16,求CE的长; 5(2)若连接OP并延长交圆O于A,B两点,CDOP于D,求CD的长.
(1)若PE交圆O于点F,EF第 4 页,共 19 页
x2y222.(本小题满分12分)已知F1,F2分别是椭圆C:221(ab0)的两个焦点,且|F1F2|2,点
ab6(2,)在该椭圆上.
2(1)求椭圆C的方程;
(2)设直线l与以原点为圆心,b为半径的圆上相切于第一象限,切点为M,且直线l与椭圆交于P、Q两
点,问F2PF2QPQ是否为定值?如果是,求出定值,如不是,说明理由.
23.已知条件p:的取值范围.
41,条件q:x2xa2a,且p是的一个必要不充分条件,求实数 x1第 5 页,共 19 页
24.已知函数f(x)=
,求不等式f(x)<4的解集.
第 6 页,共 19 页
开州区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】D
2
【解析】解:若a=0,则函数f(x)=﹣3x+1,有两个零点,不满足条件. 2
若a≠0,函数的f(x)的导数f′(x)=6ax﹣6x=6ax(x﹣),
若 f(x)存在唯一的零点x0,且x0>0,
若a>0,由f′(x)>0得x>或x<0,此时函数单调递增, 由f′(x)<0得0<x<,此时函数单调递减,
故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件. 若a<0,由f′(x)>0得<x<0,此时函数递增, 由f′(x)<0得x<或x>0,此时函数单调递减,
即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(), 若存在唯一的零点x0,且x0>0,
32
则f()>0,即2a()﹣3()+1>0, 2
()<1,即﹣1<<0,
解得a<﹣1, 故选:D
【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.
第 7 页,共 19 页
2. 【答案】A
【解析】解:由题意可得f(﹣1)=f(﹣1+3)=f(2)=log22=1 故选:A
【点评】本题考查分度函数求值,涉及对数的运算,属基础题.
3. 【答案】 D
【解析】解:由三视图知,几何体是一个组合体, 是由半个圆锥和一个四棱锥组合成的几何体, 圆柱的底面直径和母线长都是2, 四棱锥的底面是一个边长是2的正方形, 四棱锥的高与圆锥的高相同,高是∴几何体的体积是故选D.
=
,
=
,
【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.
4. 【答案】A
【解析】解:∵双曲线的中心在原点,焦点在x轴上, ∴设双曲线的方程为
,(a>0,b>0)
由此可得双曲线的渐近线方程为y=±x,结合题意一条渐近线方程为y=x, 得=,设b=4t,a=3t,则c=∴该双曲线的离心率是e==. 故选A.
=5t(t>0)
【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.
5. 【答案】D
【解析】解:根据几何体的正视图和侧视图,得;
2
当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×1×2=;
当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;
第 8 页,共 19 页
所以,该几何体体积的所有可能取值集合是{V|0<V≤}. 故选:D.
【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.
6. 【答案】D 【解析】
试题分析:由Mx2x25x0,xZx5x0,xZ2,1,集合N0,a, 2又MN,a1或a2,故选D. 考点:交集及其运算. 7. 【答案】A
2
【解析】解:整理抛物线方程得x=﹣y,∴p=
∵抛物线方程开口向下, ∴准线方程是y=故选:A.
【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.
8. 【答案】 A 【解析】解:∵|BC|=1,点B的坐标为(
又∠AOC=α,∴∠AOB=∴sin(
﹣α)=
﹣(
=﹣(=﹣sin
cos.
﹣α)]=cos
,
﹣α)]=sin
. ﹣
=
(2cos
2
,
,﹣ ﹣α)=
),故|OB|=1,∴△BOC为等边三角形,∴∠BOC=,﹣sin(
﹣α)=﹣
sin(
﹣α)
sin(
,
,
﹣α,∴cos(
∴cosα=cos[=
+
cos(﹣α)+sin
∴sinα=sin[=∴
﹣cos2
cos(﹣α)﹣cos
﹣α)
﹣1)﹣sinα=cosα﹣sinα
第 9 页,共 19 页
=
故选:A.
﹣
=,
【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.
9. 【答案】C
【解析】解:法一:
由回归直线的斜率的估计值为1.23,可排除D 由线性回归直线方程样本点的中心为(4,5), 法二:
将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B 因为回归直线方程一定过样本中心点,
将样本点的中心(4,5)分别代入各个选项,只有C满足,
故选C
【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程.
10.【答案】A 【解析】解:∵∴∴
(acosB+bcosA)=2csinC,
2
(sinAcosB+sinBcosA)=2sinC,
sinC=2sin2C,且sinC>0,
,
,解得:ab≤16,(当且仅当a=b=4成立)
=4
,
∴sinC=
∵a+b=8,可得:8≥2
∵△ABC的面积的最大值S△ABC=absinC≤∴a=b=4,
则此时△ABC的形状为等腰三角形. 故选:A.
11.【答案】B
【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确; ∵直线l⊥平面α,α⊥β,∴l∥平面β,或l⊂平面β,又∵直线m⊂平面β,∴l与m可能平行也可能相交,还可以异面,故(2)错误;
∵直线l⊥平面α,l∥m,∴m⊥α,∵直线m⊂平面β,∴α⊥β,故(3)正确;
第 10 页,共 19 页
∵直线l⊥平面α,l⊥m,∴m∥α或m⊂α,又∵直线m⊂平面β,则α与β可能平行也可能相交,故(4)错误; 故选B.
【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.
12.【答案】A
2
【解析】解:lgx,lgy,lgz成等差数列,∴2lgy=lgx•lgz,即y=zx,∴充分性成立,
2
因为y=zx,但是x,z可能同时为负数,所以必要性不成立,
故选:A.
【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题.
二、填空题
13.【答案】 ②
【解析】解:由MP,OM分别为角∵
∴OM<0<MP. 故答案为:②.
的正弦线、余弦线,如图, ,
【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小.
14.【答案】
第 11 页,共 19 页
【解析】
【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂数yxR在0,上单调递增,则0,若在0,上单调递减,则0;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 1 15.【答案】 12 .
【解析】解:因为x>3,所以f(x)>0 由题意知:
=﹣
=t﹣3t2
函数yxR是偶函数,则必为偶数.当是分数时,一般将其先化为根式,再判断;(2)若幂函
令t=∈(0,),h(t)=
2
因为 h(t)=t﹣3t 的对称轴x=,开口朝上知函数h(t)在(0,)上单调递增,(,)单调递减;
故h(t)∈(0,由h(t)=
]
≥12
⇒f(x)=
故答案为:12
16.【答案】 [0,2] .
【解析】解:命题p:||x﹣a|<3,解得a﹣3<x<a+3,即p=(a﹣3,a+3);
2
命题q:x﹣2x﹣3<0,解得﹣1<x<3,即q=(﹣1,3).
∵q是p的充分不必要条件, ∴q⊊p, ∴
解得0≤a≤2, 故答案为:[0,2].
,
则实数a的取值范围是[0,2].
第 12 页,共 19 页
【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题
17.【答案】2
3
【解析】结合函数的解析式可得:f11211,
2对函数求导可得:f'x3x2,故切线的斜率为kf'13121,
2则切线方程为:y11x1,即yx2,
22圆C:xya2的圆心为0,a,则:a022.
18.【答案】 4
△PAB是直角三角形,∠ACB=90°【解析】解:由PA⊥平面ABC,则△PAC,又由已知△ABC是直角三角形,所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形, 所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB. 故答案为:4
【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.
三、解答题
19.【答案】
22
【解析】解:(1)设圆的方程为x+y+Dx+Ey+F=0
22
圆的方程为x+y﹣8y﹣9=0…
(2)直线CD与圆M相切O、D分别是AB、BR的中点 则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD, 又∠CAO=∠ACO,∴∠DOB=∠COD 又OC=OB,所以△BOD≌△COD ∴∠OCD=∠OBD=90°
即OC⊥CD,则直线CD与圆M相切. … (其他方法亦可)
第 13 页,共 19 页
20.【答案】
【解析】解:方法一(综合法) (1)取OB中点E,连接ME,NE ∵ME∥AB,AB∥CD,∴ME∥CD
又∵NE∥OC,∴平面MNE∥平面OCD∴MN∥平面OCD
(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角) 作AP⊥CD于P,连接MP ∵OA⊥平面ABCD,∴CD⊥MP ∵,∴
,
∴
所以AB与MD所成角的大小为.
(3)∵AB∥平面OCD,
∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD, ∴CD⊥平面OAP,∴AQ⊥CD.
又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,第 14 页,共 19 页
,
∵
,
,
∴
,所以点B到平面OCD的距离为.
方法二(向量法)
作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系: A(0,0,0),B(1,0,0),,
O(0,0,2),M(0,0,1),
(1)
,
,
设平面OCD的法向量为n=(x,y,z),则•=0,
•
=0 即
取,解得 ∵
•
=(
,
,﹣1)•(0,4,
)=0,
∴MN∥平面OCD.
(2)设AB与MD所成的角为θ, ∵∴, ∴
,AB与MD所成角的大小为
.
(3)设点B到平面OCD的距离为d,则d为在向量
=(0,4,
)上的投影的绝对值,由
,得d=
=
第 15 页,共 19 页
,
所以点B到平面OCD的距离为.
【点评】培养学生利用多种方法解决数学问题的能力,考查学生利用空间向量求直线间的夹角和距离的能力.
21.【答案】(1)CE4;(2)CD【解析】
试题分析:(1)由切线的性质可知ECP∽EFC,由相似三角形性质知EF:CECE:EP,可得CE4;(2)由切割线定理可得CPBP(4BP),求出BP,OP,再由CDOPOCCP,求出CD的值. 1 试题解析:
(1)因为CP是圆O的切线,CE是圆O的直径,所以CPCE,CFE90,所以ECP∽EFC,
0613. 132设CEx,EP所以x2x29,又因为ECP∽EFC,所以EF:CECE:EP,
162x9,解得x4. 5第 16 页,共 19 页
考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质. 22.【答案】
【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.
第 17 页,共 19 页
23.【答案】1,2. 【解析】
试题分析:先化简条件p得3x1,分三种情况化简条件,由p是的一个必要不充分条件,可分三种情况列不等组,分别求解后求并集即可求得符合题意的实数的取值范围.
第 18 页,共 19 页
14xa10a,当时,q:;1得p:3x1,由x2xa2a得xa2x111当a时,q:a1,a;当a时,q:a,a1
22由题意得,p是的一个必要不充分条件,
111当a时,满足条件;当a时,a1,a3,1得a1,,
22211当a时,a,a13,1得a,2 综上,a1,2.
22试题解析:由
考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.
【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断p是的什么条件,需要从两方面分析:一是由条件p能否推得条件,二是由条件能否推得条件p.对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.本题的解答是根据集合思想解不等式求解的. 24.【答案】
【解析】解:函数f(x)=
当x≥﹣1时,2x+4<4,解得﹣1≤x<0; 当x<﹣1时,﹣x+1<4解得﹣3<x<﹣1. 综上x∈(﹣3,0).
不等式的解集为:(﹣3,0).
,不等式f(x)<4,
第 19 页,共 19 页
因篇幅问题不能全部显示,请点此查看更多更全内容