您的当前位置:首页正文

开州区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

2024-10-18 来源:威能网
开州区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________

一、选择题

1. 已知函数f(x)=2ax3﹣3x2+1,若 f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( ) A.(1,+∞) B.(0,1) C.(﹣1,0)

D.(﹣∞,﹣1)

2. 函数f(x)=

,则f(﹣1)的值为( )

A.1 B.2 C.3 D.4

3. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为(

A. B.(4+π) C. D.

4. 已知双曲线(a>0,b>0)的一条渐近线方程为,则双曲线的离心率为( A.

B.

C.

D.

5. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )

A.{, } B.{,, } C.{V|≤V≤} D.{V|0<V≤}

第 1 页,共 19 页

6. 已知集合M{x|2x25x0,xZ},N{0,a},若MN,则a( ) A.1 B. C.1或 D.1或2 7. 抛物线y=﹣8x2的准线方程是( ) A.y=

8. 如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为(﹣

),∠AOC=α,若|BC|=1,则

cos2

﹣sin

cos

的值为( )

B.y=2 C.x=

D.y=﹣2

A. B. C.﹣ D.﹣

9. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( ) A.

B.

C.

D. =0.08x+1.23

10.在△ABC中,角A,B,C所对的边分别为a,b,c,若面积的最大值为4A.等腰三角形

,则此时△ABC的形状为( ) B.正三角形 C.直角三角形

(acosB+bcosA)=2csinC,a+b=8,且△ABC的

D.钝角三角形

11.已知直线l⊥平面α,直线m⊂平面β,有下面四个命题: (1)α∥β⇒l⊥m,(2)α⊥β⇒l∥m, (3)l∥m⇒α⊥β,(4)l⊥m⇒α∥β, 其中正确命题是( )

A.(1)与(2) B.(1)与(3) C.(2)与(4) D.(3)与(4)

12.lgx,lgy,lgz成等差数列是由y2=zx成立的( ) A.充分非必要条件

B.必要非充分条件

C.充要条件 D.既不充分也不必要条件

第 2 页,共 19 页

二、填空题

13.设MP和OM分别是角

的正弦线和余弦线,则给出的以下不等式:

①MP<OM<0;②OM<0<MP;③OM<MP<0;④MP<0<OM, 其中正确的是 (把所有正确的序号都填上). 14.幂函数f(x)(m23m3)xm15.函数f(x)=

22m1在区间0,上是增函数,则m .

(x>3)的最小值为 .

16.已知条件p:{x||x﹣a|<3},条件q:{x|x2﹣2x﹣3<0},且q是p的充分不必要条件,则a的取值范围是 .

2

317.【南通中学2018届高三10月月考】已知函数fxx2x,若曲线fx在点1,f1处的切线经2过圆C:xya2的圆心,则实数a的值为__________.

18.如图,△ABC是直角三角形,∠ACB=90°,PA⊥平面ABC,此图形中有 个直角三角形.

三、解答题

19.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点. (1)若x0=﹣4,y0=1,求圆M的方程;

(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.

第 3 页,共 19 页

20.∠ABC=如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,M为OA的中点,N为BC的中点. (Ⅰ)证明:直线MN∥平面OCD; (Ⅱ)求异面直线AB与MD所成角的大小; (Ⅲ)求点B到平面OCD的距离.

OA⊥底面ABCD,OA=2,,

21.(本小题满分10分)选修4-1:几何证明选讲1111]

如图,点C为圆O上一点,CP为圆的切线,CE为圆的直径,CP3.

16,求CE的长; 5(2)若连接OP并延长交圆O于A,B两点,CDOP于D,求CD的长.

(1)若PE交圆O于点F,EF第 4 页,共 19 页

x2y222.(本小题满分12分)已知F1,F2分别是椭圆C:221(ab0)的两个焦点,且|F1F2|2,点

ab6(2,)在该椭圆上.

2(1)求椭圆C的方程;

(2)设直线l与以原点为圆心,b为半径的圆上相切于第一象限,切点为M,且直线l与椭圆交于P、Q两

点,问F2PF2QPQ是否为定值?如果是,求出定值,如不是,说明理由.

23.已知条件p:的取值范围.

41,条件q:x2xa2a,且p是的一个必要不充分条件,求实数 x1第 5 页,共 19 页

24.已知函数f(x)=

,求不等式f(x)<4的解集.

第 6 页,共 19 页

开州区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题

1. 【答案】D

2

【解析】解:若a=0,则函数f(x)=﹣3x+1,有两个零点,不满足条件. 2

若a≠0,函数的f(x)的导数f′(x)=6ax﹣6x=6ax(x﹣),

若 f(x)存在唯一的零点x0,且x0>0,

若a>0,由f′(x)>0得x>或x<0,此时函数单调递增, 由f′(x)<0得0<x<,此时函数单调递减,

故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件. 若a<0,由f′(x)>0得<x<0,此时函数递增, 由f′(x)<0得x<或x>0,此时函数单调递减,

即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(), 若存在唯一的零点x0,且x0>0,

32

则f()>0,即2a()﹣3()+1>0, 2

()<1,即﹣1<<0,

解得a<﹣1, 故选:D

【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.

第 7 页,共 19 页

2. 【答案】A

【解析】解:由题意可得f(﹣1)=f(﹣1+3)=f(2)=log22=1 故选:A

【点评】本题考查分度函数求值,涉及对数的运算,属基础题.

3. 【答案】 D

【解析】解:由三视图知,几何体是一个组合体, 是由半个圆锥和一个四棱锥组合成的几何体, 圆柱的底面直径和母线长都是2, 四棱锥的底面是一个边长是2的正方形, 四棱锥的高与圆锥的高相同,高是∴几何体的体积是故选D.

=

=

【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.

4. 【答案】A

【解析】解:∵双曲线的中心在原点,焦点在x轴上, ∴设双曲线的方程为

,(a>0,b>0)

由此可得双曲线的渐近线方程为y=±x,结合题意一条渐近线方程为y=x, 得=,设b=4t,a=3t,则c=∴该双曲线的离心率是e==. 故选A.

=5t(t>0)

【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.

5. 【答案】D

【解析】解:根据几何体的正视图和侧视图,得;

2

当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×1×2=;

当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;

第 8 页,共 19 页

所以,该几何体体积的所有可能取值集合是{V|0<V≤}. 故选:D.

【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.

6. 【答案】D 【解析】

试题分析:由Mx2x25x0,xZx5x0,xZ2,1,集合N0,a, 2又MN,a1或a2,故选D. 考点:交集及其运算. 7. 【答案】A

2

【解析】解:整理抛物线方程得x=﹣y,∴p=

∵抛物线方程开口向下, ∴准线方程是y=故选:A.

【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.

8. 【答案】 A 【解析】解:∵|BC|=1,点B的坐标为(

又∠AOC=α,∴∠AOB=∴sin(

﹣α)=

﹣(

=﹣(=﹣sin

cos.

﹣α)]=cos

﹣α)]=sin

. ﹣

=

(2cos

2

,﹣ ﹣α)=

),故|OB|=1,∴△BOC为等边三角形,∴∠BOC=,﹣sin(

﹣α)=﹣

sin(

﹣α)

sin(

﹣α,∴cos(

∴cosα=cos[=

+

cos(﹣α)+sin

∴sinα=sin[=∴

﹣cos2

cos(﹣α)﹣cos

﹣α)

﹣1)﹣sinα=cosα﹣sinα

第 9 页,共 19 页

=

故选:A.

=,

【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.

9. 【答案】C

【解析】解:法一:

由回归直线的斜率的估计值为1.23,可排除D 由线性回归直线方程样本点的中心为(4,5), 法二:

将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B 因为回归直线方程一定过样本中心点,

将样本点的中心(4,5)分别代入各个选项,只有C满足,

故选C

【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程.

10.【答案】A 【解析】解:∵∴∴

(acosB+bcosA)=2csinC,

2

(sinAcosB+sinBcosA)=2sinC,

sinC=2sin2C,且sinC>0,

,解得:ab≤16,(当且仅当a=b=4成立)

=4

∴sinC=

∵a+b=8,可得:8≥2

∵△ABC的面积的最大值S△ABC=absinC≤∴a=b=4,

则此时△ABC的形状为等腰三角形. 故选:A.

11.【答案】B

【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确; ∵直线l⊥平面α,α⊥β,∴l∥平面β,或l⊂平面β,又∵直线m⊂平面β,∴l与m可能平行也可能相交,还可以异面,故(2)错误;

∵直线l⊥平面α,l∥m,∴m⊥α,∵直线m⊂平面β,∴α⊥β,故(3)正确;

第 10 页,共 19 页

∵直线l⊥平面α,l⊥m,∴m∥α或m⊂α,又∵直线m⊂平面β,则α与β可能平行也可能相交,故(4)错误; 故选B.

【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.

12.【答案】A

2

【解析】解:lgx,lgy,lgz成等差数列,∴2lgy=lgx•lgz,即y=zx,∴充分性成立,

2

因为y=zx,但是x,z可能同时为负数,所以必要性不成立,

故选:A.

【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题.

二、填空题

13.【答案】 ②

【解析】解:由MP,OM分别为角∵

∴OM<0<MP. 故答案为:②.

的正弦线、余弦线,如图, ,

【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小.

14.【答案】

第 11 页,共 19 页

【解析】

【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂数yxR在0,上单调递增,则0,若在0,上单调递减,则0;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 1 15.【答案】 12 .

【解析】解:因为x>3,所以f(x)>0 由题意知:

=﹣

=t﹣3t2

函数yxR是偶函数,则必为偶数.当是分数时,一般将其先化为根式,再判断;(2)若幂函

令t=∈(0,),h(t)=

2

因为 h(t)=t﹣3t 的对称轴x=,开口朝上知函数h(t)在(0,)上单调递增,(,)单调递减;

故h(t)∈(0,由h(t)=

]

≥12

⇒f(x)=

故答案为:12

16.【答案】 [0,2] .

【解析】解:命题p:||x﹣a|<3,解得a﹣3<x<a+3,即p=(a﹣3,a+3);

2

命题q:x﹣2x﹣3<0,解得﹣1<x<3,即q=(﹣1,3).

∵q是p的充分不必要条件, ∴q⊊p, ∴

解得0≤a≤2, 故答案为:[0,2].

则实数a的取值范围是[0,2].

第 12 页,共 19 页

【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题

17.【答案】2

3

【解析】结合函数的解析式可得:f11211,

2对函数求导可得:f'x3x2,故切线的斜率为kf'13121,

2则切线方程为:y11x1,即yx2,

22圆C:xya2的圆心为0,a,则:a022.

18.【答案】 4

△PAB是直角三角形,∠ACB=90°【解析】解:由PA⊥平面ABC,则△PAC,又由已知△ABC是直角三角形,所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形, 所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB. 故答案为:4

【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.

三、解答题

19.【答案】

22

【解析】解:(1)设圆的方程为x+y+Dx+Ey+F=0

22

圆的方程为x+y﹣8y﹣9=0…

(2)直线CD与圆M相切O、D分别是AB、BR的中点 则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD, 又∠CAO=∠ACO,∴∠DOB=∠COD 又OC=OB,所以△BOD≌△COD ∴∠OCD=∠OBD=90°

即OC⊥CD,则直线CD与圆M相切. … (其他方法亦可)

第 13 页,共 19 页

20.【答案】

【解析】解:方法一(综合法) (1)取OB中点E,连接ME,NE ∵ME∥AB,AB∥CD,∴ME∥CD

又∵NE∥OC,∴平面MNE∥平面OCD∴MN∥平面OCD

(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角) 作AP⊥CD于P,连接MP ∵OA⊥平面ABCD,∴CD⊥MP ∵,∴

所以AB与MD所成角的大小为.

(3)∵AB∥平面OCD,

∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD, ∴CD⊥平面OAP,∴AQ⊥CD.

又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,第 14 页,共 19 页

,所以点B到平面OCD的距离为.

方法二(向量法)

作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系: A(0,0,0),B(1,0,0),,

O(0,0,2),M(0,0,1),

(1)

设平面OCD的法向量为n=(x,y,z),则•=0,

=0 即

取,解得 ∵

=(

,﹣1)•(0,4,

)=0,

∴MN∥平面OCD.

(2)设AB与MD所成的角为θ, ∵∴, ∴

,AB与MD所成角的大小为

(3)设点B到平面OCD的距离为d,则d为在向量

=(0,4,

)上的投影的绝对值,由

,得d=

=

第 15 页,共 19 页

所以点B到平面OCD的距离为.

【点评】培养学生利用多种方法解决数学问题的能力,考查学生利用空间向量求直线间的夹角和距离的能力.

21.【答案】(1)CE4;(2)CD【解析】

试题分析:(1)由切线的性质可知ECP∽EFC,由相似三角形性质知EF:CECE:EP,可得CE4;(2)由切割线定理可得CPBP(4BP),求出BP,OP,再由CDOPOCCP,求出CD的值. 1 试题解析:

(1)因为CP是圆O的切线,CE是圆O的直径,所以CPCE,CFE90,所以ECP∽EFC,

0613. 132设CEx,EP所以x2x29,又因为ECP∽EFC,所以EF:CECE:EP,

162x9,解得x4. 5第 16 页,共 19 页

考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质. 22.【答案】

【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.

第 17 页,共 19 页

23.【答案】1,2. 【解析】

试题分析:先化简条件p得3x1,分三种情况化简条件,由p是的一个必要不充分条件,可分三种情况列不等组,分别求解后求并集即可求得符合题意的实数的取值范围.

第 18 页,共 19 页

14xa10a,当时,q:;1得p:3x1,由x2xa2a得xa2x111当a时,q:a1,a;当a时,q:a,a1

22由题意得,p是的一个必要不充分条件,

111当a时,满足条件;当a时,a1,a3,1得a1,,

22211当a时,a,a13,1得a,2 综上,a1,2.

22试题解析:由

考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.

【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断p是的什么条件,需要从两方面分析:一是由条件p能否推得条件,二是由条件能否推得条件p.对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.本题的解答是根据集合思想解不等式求解的. 24.【答案】

【解析】解:函数f(x)=

当x≥﹣1时,2x+4<4,解得﹣1≤x<0; 当x<﹣1时,﹣x+1<4解得﹣3<x<﹣1. 综上x∈(﹣3,0).

不等式的解集为:(﹣3,0).

,不等式f(x)<4,

第 19 页,共 19 页

因篇幅问题不能全部显示,请点此查看更多更全内容