雷害长期困扰电网,近年来呈逐年加剧之势。线路频繁遭受雷击,不仅影响风机和电气设备正常运行,而且危及电网安全。
本文以投运风电场线路雷击记录为样本,分析了各个风机避雷器动作频次与地形地貌、不同季节、线路相别的相关性,探讨雷电天气断路器跳闸原因和集电线路雷电过电压类型。提出了适合风电场集电线路的避雷措施,并给出意见和建议。
随着国家对风力发电的鼓励、国家财政对风力发电补贴政策的落实以及特高压建设带来的弃风问题的缓解,风电装机有望在未来几年内保持快速增长。风电场大多采用35kv架空线路。
引起输电线路故障跳闸的原因有很多,其中因雷击引起的跳闸次数位居所有跳闸原因之首 。
据统计,因雷击线路造成的跳闸事故占电网总事故的60%以上。对于输电线路所拥有的防雷电能力,在实际工程中往往使用输电线路的耐雷水平以及在遭受雷击时的跳闸率作为衡量指标。
如何防护输电线路事故,尽可能减少线路雷击害事故的次数提高线路运行的可靠性,减少因线路故障带来的风电场经济损失一直都是风电工程中关注的问题。
本文某投运风电场线路防雷保护出线的问题为例,结合历年雷击记录数据,分析了各个风机避雷器动作频次与地形地貌、不同季节、线路相别的相关性,探讨了风电场集电线路避雷措施适宜性,为今后风电场线路避雷措施提供了解决方案。
- 1 -
www.whhdgk.com
1 、工程概况风电场集电线路是风电场主要组成部分,某风电场安装单机容量1.5MW风力发电机组66台,以6回35kV集电线路,接入风电场升压站,线路总长度31.5km,其中双回路2.7km,单回路28.8km,每条线路各带11台风机。升压站内35kV母线采用小电阻接地系统。
该风电场集电线路位于山地及丘陵地区,经过多年运行发现,线路路编号为YB的集电线路每年春夏季,当有雷雨时经常发生线路非正常跳闸。
2、 风电线路雷击事故分析2.1 线路避雷器动作数据统计分析
根据风电场的巡检卡与防雷检测报告统计得出,某风电场2014年1—9月各台风机避雷器动作统计如图1,各月避雷器动作统计如图2。
图1各台风机各相避雷器动作次数统计图
- 2 -
www.whhdgk.com
图2 避雷器各月动作次数走势图
由图1、图2可知:
1)YB07—YB11风机避雷器动作次数占整条线路动作次数的63.4%,明显高于其他风机,其中YB08风机避雷器动作次数最多A、B、C三相合计达20次。
2)YB07—YB11,4台风机的避雷器A、C两相的次数要明显高于B相,A相占42%、B相占41%,,占总数量的83%。
3)线路的避雷器动作次数从6月份开始明显增加,7月份避雷器动作次数翻了一倍,6-9月份动作次数占总数量的78%。YB07-YB11,4台风机在6-9月份避雷器动作频次明显高于其他风机,占整条线路动作次数的55%。
2.2 线路断路器事故跳闸数据统计分析
2012.06.03~2014.07.16,YB线在雷雨天事故跳闸统计见表1。
- 3 -
www.whhdgk.com
表1 YB线事故统计表
查阅当地气象记录资料,线路跳闸当天均为雷暴日。
3、线路跳闸原因分析
- 4 -
www.whhdgk.com
4、防雷保护措施
- 5 -
www.whhdgk.com
5 、结论
风电场是利用风能转化为电能,风资源的好坏决定了整个风场的效益,而风资源与海拔高度成正比。为了使风机处于更好的风资源区域,风机往往都会选择地势较高的位置,而这些海拔较高的位置都伴随着更高的雷击风险。建议风电场在设计、建设时应重点考虑以下方面:
1)采用架空集电线路时,集电线路采用双地线设计,减少导线的保护角。地形比较复杂区域,可以考虑增设耦合地线。
2)集电线路采用瓷绝缘子或玻璃绝缘子,并提高杆塔的绝缘等级。
3)集电线路杆塔接地装置,在高土壤电阻率地区时,应采用特殊接地方式,保证杆塔的接地电阻长期有效。
4)集电线路杆塔上适度增设避雷器,并选用合适的参数、保证避雷器的产品质量,加强日常维护。
5)对于高雷暴地区,建议采用电缆方案,避免产生雷击事件。由于电缆为全绝缘体,在地中直埋,电缆上部铺设避雷扁钢,可以有效的解决直击雷和感应雷,并且在电缆头两端均设置避雷器,对电缆进行保护。
6)本工程集电线路的防雷、接地的设计优于规程要求,实际的雷击跳闸率低于该地区的电网系统的跳闸率。但雷电活动随机性较强,不论采取何种方案均有局限性,均不能完全保证免遭雷电灾害。
- 6 -
www.whhdgk.com
为提高集电线路的防雷水平,降低集电线路的雷击跳闸率,需要全面考虑高压集电线路经过地区雷电活动强弱程度、地形地貌特点和土壤电阻率等情况,结合风电场集电线路设计方案以及系统运行方式等,确定合理的防雷保护方案。
- 7 -
因篇幅问题不能全部显示,请点此查看更多更全内容