您的当前位置:首页正文

2009年重庆市中考数学试卷及答案

2024-10-18 来源:威能网
中考网 http://www.yaozhongkao.com

重庆市2009年初中毕业暨高中招生考试

数 学 试 卷

(全卷共五个大题,满分150分,考试时间120分钟)

题号 得分 一 二 三 四 五 总分 总分人 b4acb2参考公式:抛物线y=ax²+bx+c(a≠0)的顶点坐标为(,),对称轴公式

2a4ab为x

2a一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。

1.-5的相反数是( )

A.5 B.5 C.2.计算2xx的结果是( )

A.

3211 D. 55x B.2x C.2x5 D.2x6

1的自变量取值范围是( ) x33.函数y A.x>﹣3 B.x<﹣3 C.x≠﹣3 D.x≥﹣3 4.如图,直线AB、CD相交于点E,DF//AB,若CAEC100,则D等于( )

EA A.70º B.80º C.90º D.100º

5.下列调查中,适宜采用全面调查(普查)方式的是( )

A.调查一批新型节能灯泡的使用寿命

DB.调查长江流域的水污染情况

C.调查重庆市初中学生的视力情况

D.为保证“神舟7号”的成功发射,对其零部件进行检查

O6.如图,⊙O是ABC的外接圆,AB是直径,若BOC80,

则A等于( ) A.60º B.50º C.40º D.30º

7.由四个大小相同的正方体组成的集合体如图所示,那么它的左B视图是( )

正面 A B C D

8.观察下列图形,则第n个图形中三角形的个数是( )

BFAC京翰教育http://www.zgjhjy.com/

中考网 http://www.yaozhongkao.com

……

A.2n2 B.4n4 C.4n4 D.4n 9.如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,D沿路线B→C→D作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是( )

第1个

第2个

第3个

3yy3yACPBy21O13x1O13xO3xO13x A B C D 10.如图,在等腰Rt△ABC中,∠C=90º,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连接DE、DF、EF。在C此运动变化的过程中,下列结论:

E①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形;③DE长度的最小值为4;④四边形CDFE的面积保

D持不变;⑤△CDE面积的最大值为8。

其中正确的结论是( ) ABFA.①②③ B.①④⑤ C.①③④ D.③④⑤ 二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将正确答案直接填在题后的横线上。

11.据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7840000万元,那么7840000万元用科学计数法表示为 万元。 12.分式方程

12的解为 。 x1x113.已知△ABC与△DEF相似且面积比为4︰25,则△ABC与△DEF的相似比为 。 14.已知⊙O1的半径为3cm,⊙O2的半径为4cm,两圆的圆心距O1O2为7cm,则⊙O1与⊙O2的位置关系为 。

15在平面直角坐标系xOy中,直线yx3与两坐标轴围成一个△AOB。现将背面完全相同,正面分别标有数1、2、3、

11、的5张卡片洗匀后,背面朝上,从中任取一张,23将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为 。

16.某公司销售A、B、C三种产品,在去年的销售中,高新产品C的销售金额占总销售金额的40%。由于受国际金融危机的影响,今年A、B两种产品的销售金额都将比去年减少20%,因而高新产品C是今年销售的重点。若要使今年的总销售金额与去年持平,那么今年高新产品C的销售金额应比去年增加 %。

京翰教育http://www.zgjhjy.com/

中考网 http://www.yaozhongkao.com

三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤。

17.计算:2()1(2)09(1)2

18.解不等式组:x+3>0…….①

3(x-1)≤2x-1……②

19.作图:请你在下图中作出一个以线段AB为一边的等边△ABC。(要求:用尺规作图,并写出已知、求作,保留作图痕迹,不写作法和结论)

已知:

求作: A B 19题图

20.为了建设“森林重庆”,绿化环境,某中学七年级一班同学都积极参加了植树活动。今年4月份该班同学的植树情况的部分统计如下图所示:

13京翰教育http://www.zgjhjy.com/

中考网 http://www.yaozhongkao.com

人数

16 16 14植树2株的 12 9人数占32% 10 8

6

4

2 142

(1)请你根据以上统计图中的信息,填写下表: 7456植树量(株)该班人数 植树株数的中位数 植树株数的众数 (2)请你将该条形统计图补充完整。 四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的 演算过程或推理步骤。

1x22x1)21.先化简,再求值:(1,其中x3 2x2x4

22.已知:如图在平面直角坐标系xOy中,直线AB分别 与x、y轴交于点B、A,与反比例函数的图象分别交

于点C、D,CE⊥x轴于点E,tan∠ABO=1/2,OB=4, OE=2。

(1)求该反比例函数的解析式; (2)求直线AB的解析式。

y C E A B D x 京翰教育http://www.zgjhjy.com/

中考网 http://www.yaozhongkao.com

23.有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同)。小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积。 (1)请你用画树状图或列表的方法,求这两个数的积为0的概率;

(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢。你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平。

2 1

3 4

24.已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90º,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC。

AD(1)求证:BG=FG;

(2)若AD=DC=2,求AB的长。

F

B

CG

E

25.某电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x之间满足函数关系y=﹣50x+2600,去年的月销售量p(万台)与月份x之间成一次函数关系,其中两个月的销售情况如下表:

月份 1月 5月 销售量 3.9万台 4.3万台 (1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?

(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了m%,且每月的销售量都比去年12月份下降了1.5m%。国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴。受此政策的影响,今年3月份至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台。若今年3至5月份

京翰教育http://www.zgjhjy.com/

中考网 http://www.yaozhongkao.com

国家对这种电视机的销售共给予财政补贴936万元,求m的值(保留一位小数) (参考数据:345.831,355.916,376.083,386.164)

26.已知:如图,在平面直角坐标系xOy中,矩形OABC y 的边OA在y轴的正半轴上,OC在x轴的正半轴上, OA=2,OC=3。过原点O作∠AOC的平分线交AB于点 D,连接DC,过点D作DE⊥DC,交OA于点E。 (1)求过点E、D、C的抛物线的解析式;

(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F,另一边与线段OC交于点G。 如果DF与(1)中的抛物线交于另一点M,点M的 横坐标为

A E O D B x C 6,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理 5 由;

(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ 与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐 标;若不存在,请说明理由。

重庆市2009年初中毕业暨高中招生考试

数学试题参考答案及评分意见

一、选择题

1.A 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.B 10.B 二、填空题

京翰教育http://www.zgjhjy.com/

中考网 http://www.yaozhongkao.com

11.7.84106 12.x3 13.2:5 14.外切 15.三、解答题

3 16.30 517.解:原式23131··············································································· (5分) 3. ······························································································· (6分) 18.解:由①,得x3. ··················································································· (2分)

由②,得x≤2. ···················································································· (4分) 所以,原不等式组的解集为3x≤2. ················································ (6分)

19.解:已知:线段AB. ···················································································· (1分) 求作:等边△ABC.···························································································· (2分) 作图如下:(注:每段弧各1分,连接线段AC、BC各1分)

C

20.解:(1)填表如下: 该班人数 50 (2)补图如下:

四、解答题:

16 14 12 10 8 6 4 2 0 A

B

······································································· (6分)

植树株数的中位数 3 植树株树的众数 2 ···················································· (4分)

人数 16 14 9 7 4 1 2 4 5 6 植树量(株)

···························· (6分)

x21(x1)221.解:原式······························································· (4分) x2(x2)(x2)x1(x2)(x2) ·························································································· (6分)

x2(x1)2京翰教育http://www.zgjhjy.com/

中考网 http://www.yaozhongkao.com

x2. ············································································································· (8分) x1325当x3时,原式······································································(10分) . ·

31222.解:(1)OB4,OE2,BE246. CE⊥x轴于点E.

CE1································································· (1分) tanABO,CE3. ·

BE2················································································· (2分) 3. ·点C的坐标为C2,设反比例函数的解析式为y将点C的坐标代入,得3m(m0). xm, ··········································································· (3分) 2m6. ·········································································································· (4分)

6·································································· (5分) 该反比例函数的解析式为y. ·x(2)

OB4,B(4,·············································································· (6分) 0). ·

OA1, OB2tanABOOA2,A(0,······················································································· (7分) 2). ·

设直线AB的解析式为ykxb(k0).

将点A、B的坐标分别代入,得b2, ························································· (8分)

4kb0.1k,解得····································································································· (9分) 2 ·

b2.1································································(10分) 直线AB的解析式为yx2. ·

223.解:(1)画树状图如下: 幸运数 吉祥数 积

1 0 1 3 0 1 3

2 0 1 3 0 2 6

3 0 1 3 0 3 9

4 0 1 3 0 4 12

······················ (4分)

京翰教育http://www.zgjhjy.com/

中考网 http://www.yaozhongkao.com

或列表如下: 幸运数 积 吉祥数 0 1 0 1 0 2 0 3 0 4 1 2 3 4 3 3 6 9 12 ······························································································································ (4分) 由图(表)知,所有等可能的结果有12种,其中积为0的有4种, 所以,积为0的概率为P41···································································· (6分) . ·

123(2)不公平. ······································································································· (7分) 因为由图(表)知,积为奇数的有4种,积为偶数的有8种.

41,································································· (8分) 12382. ·积为偶数的概率为P2········································································· (9分) 12312

因为,所以,该游戏不公平.

33

所以,积为奇数的概率为P1游戏规则可修改为:

若这两个数的积为0,则小亮赢;积为奇数,则小红赢. ······································(10分) (只要正确即可)

ABC90°,DE⊥AC于点F,

ABCAFE. ····································· (1分)

D ACAE,EAFCAB, A F △ABC≌△AFE ······································· (2分)

ABAF. ················································ (3分)

B C

G 连接AG, ····················································· (4分)

AGAG,ABAF,

E Rt△ABG≌Rt△AFG. ························· (5分)

BGFG. ··············································· (6分) (2)解:ADDC,DF⊥AC,

11AFACAE. ······················································································· (7分)

22E30°.

FADE30°, ························································································ (8分)

24.(1)证明:

AF3. ······································································································· (9分)

京翰教育http://www.zgjhjy.com/

中考网 http://www.yaozhongkao.com

····························································································(10分) ABAF3. ·五、解答题:

25.解:(1)设p与x的函数关系为pkxb(k0),根据题意,得

kb3.9, ······································································································· (1分) 5kb4.3.解得k0.1,所以,p0.1x3.8.··································································· (2分)

b3.8.设月销售金额为w万元,则wpy(0.1x3.8)(50x2600).······················· (3分) 化简,得w5x270x9800,所以,w5(x7)210125.

当x7时,w取得最大值,最大值为10125.

答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元. ··· (4分) (2)去年12月份每台的售价为501226002000(元),

去年12月份的销售量为0.1123.85(万台), ·············································· (5分) 根据题意,得2000(1m%)[5(11.5m%)1.5]13%3936. ··················· (8分) 令m%t,原方程可化为7.5t14t5.30.

214(14)247.55.31437. t27.515t1≈0.528,t2≈1.339(舍去)

答:m的值约为52.8. ·························································································(10分) 26.解:(1)由已知,得C(3,0),D(2,2),

ADE90°CDBBCD, AEADtanADE2tanBCD211. 2·········································································································· (1分) 1). ·E(0,设过点E、D、C的抛物线的解析式为yaxbxc(a0). 将点E的坐标代入,得c1.

将c1和点D、C的坐标分别代入,得

2京翰教育http://www.zgjhjy.com/

中考网 http://www.yaozhongkao.com

4a2b12, ··································································································· (2分) 9a3b10.5a6解这个方程组,得

b136故抛物线的解析式为y5213·························································· (3分) xx1.·

666, 5y (2)EF2GO成立. ························································································ (4分) 点M在该抛物线上,且它的横坐标为

点M的纵坐标为

12. ······················································································· (5分) 5F A E G K C x

设DM的解析式为ykxb1(k0), 将点D、M的坐标分别代入,得

M D B 12kb12,k,2 612 解得kb1.5b13.51······································································· (6分) DM的解析式为yx3. ·

2························································································· (7分) 3),EF2. ·F(0,过点D作DK⊥OC于点K,

则DADK.

O ADKFDG90°, FDAGDK.

又FADGKD90°, △DAF≌△DKG. KGAF1. GO1. ··········································································································· (8分) EF2GO.

(3)

,0),C(3,0),则设P(1,2). 点P在AB上,G(1PG2(t1)222,PC2(3t)222,GC2.

京翰教育http://www.zgjhjy.com/

中考网 http://www.yaozhongkao.com

①若PGPC,则(t1)222(3t)222, 解得t2.P(2,2),此时点Q与点P重合.

········································································································· (9分) 2). ·Q(2,②若PGGC,则(t1)2222, 解得 t1,P(1,2),此时GP⊥x轴.

GP与该抛物线在第一象限内的交点Q的横坐标为1,

点Q的纵坐标为

7. 37······································································································(10分) Q1,. ·3③若PCGC,则(3t)22222,

解得t3,P(3,2),此时PCGC2,△PCG是等腰直角三角形. 过点Q作QH⊥x轴于点H,

y 则QHGH,设QHh,

Q A E G P (Q) (P) D Q (P) B Q(h1,h).

513(h1)2(h1)1h.

667解得h1,h22(舍去).

5O H C x

127·········································· (12分) Q,. ·

552)或Q1,或Q综上所述,存在三个满足条件的点Q,即Q(2,

73127,. 55京翰教育http://www.zgjhjy.com/

因篇幅问题不能全部显示,请点此查看更多更全内容