圆的知识有哪些? 尤其是公式 ,定理。(初中)

发布网友 发布时间:2022-04-23 05:39

我来回答

4个回答

热心网友 时间:2023-07-19 04:30

圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。根据定义,通常用圆规来画圆。 [编辑本段]【圆的基本知识】   圆定义
  圆的定义有2
  其一:平面上到定点的距离等于定长的点的集合叫圆。
  其二:平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
   概括
  把一个圆按一条直线对折过去,并且完全重合,展开再换个方向对折,折出后,这些折痕相交的一个点,叫做圆心,用字母O表示。连接圆心和圆上的任意一点的线段叫做半径,用字母r表示。通过圆心并且两端都在圆上的线段叫做直径,用字母d表示。圆心定圆的位置,半径和直径定圆的大小。在同一个圆或等圆中,半径都相等,直径也都相等,直径是半径的2倍,半径是直径的1/2。
  用字母表示是:d=2r或r=d/2
   圆的相关量
  圆周率:圆周长度与圆的直径长度的比值叫做圆周率,它是一个无限不循环的小数通常用π表示,π=3.1415926535...,在实际应用中我们只取它的近似值,即π≈3.14(在奥数中一般π只取3、3.1416或3.14159)
  圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。
  圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
  内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
  扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。
  【圆和圆的相关量字母表示方法】
  圆—⊙ 半径—r或R(在环形圆中外环半径表示的字母) 弧—⌒ 直径—d
  扇形弧长/圆锥母线—l 周长—C 面积—S
   【圆和其他图形的位置关系】
  圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
  直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。
  两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。 [编辑本段]【圆的平面几何性质和定理】  一有关圆的基本性质与定理 
  ⑴圆的确定:画一条线段,以线段长为半径以一端点为圆心画弧绕360度后得到圆。
  圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
  ⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。 直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
  ⑶有关外接圆和内切圆的性质和定理
  ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
  ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
  ③R=2S△÷L(R:内切圆半径,S:面积,L:周长)
  ④两相切圆的连心线过切点(连心线:两个圆心相连的线段)
  ⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
  (4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
  (5)圆心角的度数等于它所对的弧的度数。
  (6)圆周角的度数等于它所对的弧的度数的一半。
  (7)弦切角的度数等于它所夹的弧的度数的一半。
  (8)圆内角的度数等于这个角所对的弧的度数之和的一半。
  (9)圆外角的度数等于这个等于这个角所截两段弧的度数之差的一半。
   〖有关切线的性质和定理〗
  
  圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。
  切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
  切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。
  切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。
  〖有关圆的计算公式〗
  1.圆的周长C=2πr=πd 2.圆的面积S=πr^2; 3.扇形弧长l=nπr/180
  4.扇形面积S=(nπr^2)/360=lr/2(l为扇形的弧长)5.圆锥侧面积S=πrl 6.圆锥侧面展开图(扇形)的圆心角n=360r/l(r是底面半径,l是母线长) [编辑本段]【圆的解析几何性质和定理】   〖圆的解析几何方程〗
   圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。
  圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2-r^2。
  圆的离心率e=0,在圆上任意一点的曲率半径都是r。
   〖圆与直线的位置关系判断〗
  
  平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:
  如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
  如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
  如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
  2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:
  当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;
  当x1<x=-C/A<x2时,直线与圆相交;
  半径r,直径d
  在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2
  x^2+y^2+Dx+Ey+F=0
  => (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F
  => 圆心坐标为(-D/2,-E/2)
  其实只要保证X方Y方前系数都是1
  就可以直接判断出圆心坐标为(-D/2,-E/2)
  这可以作为一个结论运用的
  且r=根号(圆心坐标的平方和-F) [编辑本段]圆知识点总结  平面上到定点的距离等于定长的所有点组成的图形叫做圆。
  圆心:圆中心固定的一点叫做圆心。用字母o或⊙表示
  直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
  半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
  圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d
  圆的半径或直径决定圆的大小,圆心决定圆的位置。
  圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
  圆的周长与直径的比值叫做圆周率。
  圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数,用字母π表示。计算时,通常取它的近似值,π≈3.14。
  直径所对的圆周角是直角。90°的圆周角所对的弦是直径。
  圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2,用字母S表示。
  一条弧所对的圆周角是圆心角的二分之一。

热心网友 时间:2023-07-19 04:30

质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:vx=vo 2.竖直方向速度:vy=gt
3.水平方向位移:x=vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度vt=(vx2+vy2)1/2=[vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=vy/vx=gt/v0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度v=s/t=2πr/t 2.角速度ω=φ/t=2π/t=2πf
3.向心加速度a=v2/r=ω2r=(2π/t)2r 4.向心力f心=mv2/r=mω2r=mr(2π/t)2=mωv=f合
5.周期与频率:t=1/f 6.角速度与线速度的关系:v=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(φ):弧度(rad);频率(f):赫(hz);周期(t):秒(s);转速(n):r/s;半径(r):米(m);线速度(v):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:t2/r3=k(=4π2/gm){r:轨道半径,t:周期,k:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:f=gm1m2/r2 (g=6.67×10-11nom2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:gmm/r2=mg;g=gm/r2 {r:天体半径(m),m:天体质量(kg)}
4.卫星绕行速度、角速度、周期:v=(gm/r)1/2;ω=(gm/r3)1/2;t=2π(r3/gm)1/2{m:中心天体质量}
5.第一(二、三)宇宙速度v1=(g地r地)1/2=(gm/r地)1/2=7.9km/s;v2=11.2km/s;v3=16.7km/s
6.地球同步卫星gmm/(r地+h)2=m4π2(r地+h)/t2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,f向=f万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

热心网友 时间:2023-07-19 04:30

圆的知识有圆心定理,圆周角定理,切线的性质定理,正多边形的面积计算公式:s=1/2py,弧长计算公式:J=nπR/180,扇形面积:S=nπR/360或S=1/2RJ.等等。

热心网友 时间:2023-07-19 04:31

圆的面积公式 πr�0�5圆的周长公式 2πr 或πR

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com