一道数学很复杂的题目

发布网友 发布时间:2022-04-24 14:39

我来回答

2个回答

热心网友 时间:2023-10-16 20:14

1.为了简化算式,设A=2000的立方根,B=2001的立方根,C=2002的立方根

A^3=2000,B^3=2001,C^3=2002

A^3x^3=B^3y^3=C^z^3

y=Ax/B

z=Ax/C

2000x^2+2002z^2+2001y^2

=A^3*x^2+C^3*(Ax/C)^2+B^3*(Ax/B}^2

=A^3*x^2+A^2*C*x^2+A^2*B*x^2

=A^2*X^2*(A+B+C)

(2000x^2+2002z^2+2001y^2)的立方根=A+B+C

2000x^2+2002z^2+2001y^2=(A+B+C)^3

2000x^2+2002z^2+2001y^2=A^2*X^2*(A+B+C)

A^2*x^2*(A+B+C)=(A+B+C)^3

A^2*x^2=(A+B+C)^2

Ax=A+B+C

1/x=A/(A+B+C)

y=Ax/B=(A+B+C)/B

1/y=B/(A+B+C)

z=Ax/C=(A+B+C)/C

1/z=C/(A+B+C

1/x+1/y+1/z=A/(A+B+C)+B/(A+B+C)+C/(A+B+C=1

热心网友 时间:2023-10-16 20:15

2000x^3=2001y^3=2002z^3=a
则,2000x^2=a/x,2001y^2=a/y,2002z^2=a/z

(2000x^2+2001y^2+2002z^2)^(1/3)=2000^(1/3)+2001^(1/3)+2002^(1/3)=b
(a/x+a/y+a/z)^(1/3)=b
a(1/x+1/y+1/z)=b^3
(1/x+1/y+1/z)=b^3/a
(1/x+1/y+1/z)=(2000^(1/3)/(2000^(1/3)x)+2001^(1/3)/(2001^(1/3)y)+2002^(1/3)/(2002^(1/3)x))^3
(1/x+1/y+1/z)=(1/x+1/y+1/z)^3
假设1/x+1/y+1/z=A
A^3-A=0
A(A-1)(A+1)=0
那么A=0,A=-1,A=1
1/x+1/y+1/z=0,1/x+1/y+1/z=-1,1/x+1/y+1/z=1

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com