加权算术平均数和调和平均数有什么不同

发布网友 发布时间:2022-04-24 11:48

我来回答

2个回答

热心网友 时间:2022-05-11 06:54

展开1全部http://ke.baidu.com/view/687354.htm
调和平均数
harmonic
mean
调和平均数是平均数的一种。但统计调和平均数,与数学调和平均数不同。
在数学中调和平均数与算术平均数都是的自成体系的。计算结果两者不相同且前者恒小于后者。
因而数学调和平均数定义为:数值倒数的平均数的倒数。但统计加权调和平均数则与之不同,它是加权算术平均数的变形,附属于算术平均数,不能单独成立体系。且计算结果与加权算术平均数完全相等。
主要是用来解决在无法掌握总体单位数(频数)的情况下,只有每组的变量值和相应的标志总量,而需要求得平均数的情况下使用的一种数据方法。
公式:n/(1/A1+1/A2+...+1/An)
加权平均数
Weighted
average
加权平均数是不同比重数据的平均数,加权平均数就是把原始数据按照合理的比例来计算,若
n个数中,x1出现f1次,x2出现f2次,…,xk出现fk次,那么(x1f1
+
x2f2+
...
xkfk)÷
(f1
+
f2
+
...
+
fk)
叫做x1,x2,…,xk的加权平均数。f1,f2,…,fk是x1,x2,…,xk的权。
公式:(x1f1
+
x2f2+
...
xkfk)/n,其中f1
+
f2
+
...
+
fk=n,f1,f2,…,fk叫做权。
说明:1)“权”的英文是weight,表示数据的重要程度。即数据的权能反映数据的相对“重要程度”。
2)
平均数是加权平均数的一种特殊情况,即各项的权相等时,加权平均数就是算术平均数。

热心网友 时间:2022-05-11 08:12

a≤调和平均数≤几何平均数≤算术平均数≤平方平均数≤b
二元的易证,多元的就有点麻烦了。下面给二元的证明,多元的找本竞赛书看吧。
以下设a、b均为正数(这是为了避免分母为0的情况,否则对一些式子非负数也成立)。
基础的,几何和算术:因(a
-
b)^2
>=
0,即(a
+
b)^2
-
4ab
>=
0,故a
+
b
>=
√(4ab)
=
2√(ab).
调和与几何:利用上式,有1
/
(1/a
+
1/b)
=
ab/(a+b)
<=
ab
/
2√(ab).
算术与平方:因(a^2
+
b^2)
/
2
-
(a/2
+
b/2)^2
=
(a
-
b)^2
/
4
>=
0,故√((a^2
+
b^2)
/
2)
>=
(a
+
b)/2.
n元的情况,几何与算术可以用归纳法来证,有一点小技巧;也可以做为其他一些不等式的推论,如排序不等式、cauchy不等式,jensen不等式等。另几个也是类似的。其中jensen不等式是关于凸函数性质的,证明要用到高等数学,不过比较广泛,上面的几个不等式好像都可以用它推出来。要看初等的证明方法还是看竞赛书吧
调和:2
/
(1/a
+
1/b)
=
2ab/(a+b)
2ab/(a+b)
和a同乘a+b
然后可以得到
a^2+ab<2ab
所以a≤调和平均数
平方平均数≤b
两边同平方
(a^2+b^2)/2
b^2
同乘以2
a^2+b^2<2b^2
所以平方平均数≤b

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com