发布网友 发布时间:2022-04-24 11:52
共1个回答
热心网友 时间:2023-10-11 20:47
当arctanx>0,
[x^(-2) ln|arctanx|]'
=[x^(-2) lnarctanx]'
=-2x^(-3)×(1/arctanx)×(arctanx)'
=[-2x^(-3)/arctanx] ×1/(1+x²)
= -2x^(-3)/[(1+x²)arctanx]
当arctanx<0,
[x^(-2) ln|arctanx|]'
=[x^(-2) ln(-arctanx)]'
=-2x^(-3)×(-1/arctanx)×(-arctanx)'
=[2x^(-3)/arctanx] ×[-1/(1+x²)]
= -2x^(-3)/[(1+x²)arctanx]
综上所述,[x^(-2) ln|arctanx|]'=-2x^(-3)/[(1+x²)arctanx]
希望能够帮助你,有疑问欢迎追问,祝学习进步!