发布网友 发布时间:2024-09-27 10:24
共1个回答
热心网友 时间:2024-10-26 13:31
证: 设 k1Aa1+k2Aa2+...+knAan=0
则 A(k1a1+k2a2+...+knan)=0
因为A可逆, 等式两边左乘A^-1得 -- 这一步是关键
k1a1+k2a2+...+knan = 0
又由已知 a1,a2,a3,...an 线性无关
所以 k1=k2=...=kn=0.
故 Aa1,Aa2,...,Aan 线性无关
所以 Aa1,Aa2,...,Aan 是 R^n 的一个基.
之前回答过你的问题 若已搞定请采纳