arccosx为什么是奇函数?

发布网友 发布时间:2024-10-23 16:55

我来回答

1个回答

热心网友 时间:2024-11-02 18:00

arccosx定义域是[0,π],所以非奇非偶。

arccos表示的是反三角函数中的反余弦,一般用于表示当角度为非特殊角时,由于是多值函数,往往取它的单值,值域为[0,π],记作y=arccosx,我们称它叫做反三角函数中的反余弦函数的主值。

内容解释:

1、在奇函数f(x)中,f(x)和f(-x)的符号相反且绝对值相等,即f(-x)=-f(x),反之,满足f(-x)=-f(x)的函数y=f(x)一定是奇函数,例如:f(x)=x^(2n-1),n∈Z;(f(x)等于x的2n-1次方,n属于整数)奇函数。

2、奇函数图象关于原点(0,0)中心对称。

3、奇函数的定义域必须关于原点(0,0)对称,否则不能成为奇函数。

4、若F(X)为奇函数,定义域中含有0,则F(0)=0。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com