发布网友 发布时间:2024-10-23 16:44
共1个回答
热心网友 时间:2024-11-07 01:00
1. a=0时 f(x)=2x-3=0 解得x=3/2>1 不成立
2. a≠0时 判别式=2²+4*2a*(3+a)≥0
2a²+6a+1≥0
解得a≤(-3-√7)/2或a≥(-3+√7)/2
(1) a<0时 f(x)开口向下,对称轴x=-1/(2a)
要使零点在[-1,1]上
必需-1<-1/(2a)<1 解得a<-1/2
f(-1)=2a-2-3-a≤0 解得a≤5
f(1)=2a+2-3-a≤0 解得a≤1
所以:a<-1/2
(2) a>0时 f(x)开口向上,对称轴x=-1/(2a)
必需-1<-1/(2a)<1 解得a>1/2
f(-1)=2a-2-3-a≥0 解得a≥5
f(1)=2a+2-3-a≥0 解得a≥1
所以:a≥5
综上:a≤(-3-√7)/2或a≥5