发布网友 发布时间:2024-10-23 17:19
共1个回答
热心网友 时间:2024-11-06 07:11
解:连接AA′,
∵点M是线段AC、线段A′C′的中点,AC=2,
∴AM=MC=A′M=MC′=1,
∵∠MA′C=30°,
∴∠MCA′=∠MA′C=30°,
∴∠MCB′=180°-30°=150°,
∴∠C′MC=360°-(∠MCB′+∠B′+∠C′)=180°-(150°+60°+90°)=60°,
∴∠AMA′=∠C′MC=60°,
∴△AA′M是等边三角形,
∴AA′=AM=1.
故答案为:1.