发布网友 发布时间:2024-10-23 17:00
共1个回答
热心网友 时间:3分钟前
∫[-π/2,π/2]sinx(cosx)^4dx/(1+x^2)
=∫[-π/2,0]sinx(cosx)^4dx/(1+x^2) + ∫[0,π/2]sinx(cosx)^4dx/(1+x^2) u=-x
=∫[-π/2,0]sinx(cosx)^4dx/(1+x^2) +∫[0,-π/2]sin(-u)(cos(-u)^4d(-u)/(1+(-u)^2)
=∫[-π/2,0]sinx(cosx)^4dx/(1+x^2) +∫[0,-π/2]sinu(cosu)^4du/(1+u^2)
=∫[-π/2,-π/2]sinx(cosx)^4dx/(1+x^2)
=0
sinx(cosx)^4dx/(1+x^2)奇函数,定积分为0