万分感激 ∫sinxcosx^4/(1+x^2)dx,积分上限为pi()/2,积分下限为-pi()/...

发布网友 发布时间:2024-10-23 17:00

我来回答

1个回答

热心网友 时间:3分钟前

∫[-π/2,π/2]sinx(cosx)^4dx/(1+x^2)
=∫[-π/2,0]sinx(cosx)^4dx/(1+x^2) + ∫[0,π/2]sinx(cosx)^4dx/(1+x^2) u=-x
=∫[-π/2,0]sinx(cosx)^4dx/(1+x^2) +∫[0,-π/2]sin(-u)(cos(-u)^4d(-u)/(1+(-u)^2)
=∫[-π/2,0]sinx(cosx)^4dx/(1+x^2) +∫[0,-π/2]sinu(cosu)^4du/(1+u^2)
=∫[-π/2,-π/2]sinx(cosx)^4dx/(1+x^2)
=0
sinx(cosx)^4dx/(1+x^2)奇函数,定积分为0

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com