发布网友 发布时间:2024-10-23 16:58
共1个回答
热心网友 时间:7分钟前
由题意得:a·b=0
(a-c)(b-c)=0
a·b-a·c-b·c+c^2=0
c^2-ac-bc=0
|c|^2-|a||c|cosA-|b||c|cos(π/2-A)=0
|c|^2-|a||c|cosA-|b||c|sinA=0
|c|(|c|-|a|cosA-|b|sinA)=0
|c|=0(舍),
|c|=|a|cosA+|b|sinA
=cosA+sinA
=√2sin(A+π/4)
因为0<A<π/2,
π/4<A+π/4<3π/4,
√2/2<sin(A+π/4) ≤1,
所以1<√2sin(A+π/4) ≤√2
即|c|的取值范围是(1, √2].