...椭球半径r=(asinφcosθ,bsinφsinθ,ccosθ)的某一点的法向量_百度...

发布网友 发布时间:2024-10-24 14:31

我来回答

1个回答

热心网友 时间:2024-10-26 17:26

椭球面方程:x²/a²+y²/b²+z²/c²=1(a>0, b>0, c>0)
设椭球面上有一点P(x₀, y₀, z₀)
椭球面在P点处的切平面方程为x*x₀/a²+y*y₀/b²+z*z₀/c²=1
考虑到平面的一般方程Ax+By+Cz+D=0及平面的法向量n=(A,B,C)
故椭球面在P点处的法向量为(x₀/a², y₀/b², z₀/c²)
若以极坐标来表示点P,则为(a*sinφcosθ, b*sinφsinθ, c*cosφ)(0≤θ<2π,0≤φ≤π)
即椭球面在P点处的法向量可表示为(sinφcosθ/a, sinφsinθ/b, cosφ/c)

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com