发布网友 发布时间:2024-10-24 14:30
共2个回答
热心网友 时间:2024-10-26 18:43
解析,使用放缩法。
证明:
1/2!+1/3!+1/4!+~+1/(n+1)!
<=1/1*2+1/2*3+1/3*4+~+1/n*(n+1)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+~+(1/n-1/(n+1))
=1-1/(n+1)
<1
热心网友 时间:2024-10-26 18:41
1/2!+1/3!+..+1/(n+1)!
<1/(1*2)+1/(3*2)+1/(4*3)+……+1/(n)*(n+1)
=1-1/(n+1)
<1