发布网友 发布时间:2024-10-24 15:55
共1个回答
热心网友 时间:2024-11-13 20:05
解:∵x(y²-1)dx+y(x²-1)dy=0 ==>xy²dx+x²ydy-xdx-ydy=0
==>2xy²dx+2x²ydy-2xdx-2ydy=0
==>y²d(x²)+x²d(y²)-d(x²)-d(y²)=0
==>d(x²y²)-d(x²)-d(y²)=0
==>d(x²y²-x²-y²)=0
==>x²y²-x²-y²=C-1 (C是积分常数)
==>x²y²-x²-y²+1=C
==>(x²-1)(y²-1)=C
∴原方程的通解是(x²-1)(y²-1)=C (C是积分常数)。