已知函数f(x)=x2+(2a-1)x-alnx,,g(x)=-4/x-alnx,(a∈R)

发布网友 发布时间:2024-10-24 16:30

我来回答

2个回答

热心网友 时间:6分钟前

x2+(2a-1)x-alnx)=-4/x-alnx
x^2+(2a-1)x=-4/x
x^3+(2a-1)x^2+4=0
在x∈[1,3]有两个不的实根。
设y=x^3+(2a-1)x^2+4,在x∈[1,3],它与x轴有两个不同的交点。所以其必须在x∈[1,3]取到极值
y'=3x^2+(4a-2)x=0
x=0或x=(2-4a)/3
x=0不在[1,3]内,不考虑。
所以:(2-4a)/3∈[1,3]
2-4a∈[3,9]
-4a∈[1,7]
a∈[-7/4,-1/4]
同时,两个交点还要在[1,3]内:
所y(1)*y(3)>=0
[1^3+(2a-1)1^2+4][3^3+(2a-1)3^2+4]>=0
(1+2a-1+4)(27+18a-9+4)>=0
(2a+4)(18a+22)>=0
a>=-11/9,或a<=-2
联立a∈[-7/4,-1/4]
a∈[-11/9,-1/4]

热心网友 时间:8分钟前

解:(1)因为f′(x)=2x+(2a-1)-ax=(2x-1)(x+a)x.
当a<-12时,在(0,12)以及(-a,+∞)上f′(x)>0,
在(12,-a)上,f′(x)<0
所以:f(x)在(0,12)上递增;在(12,-a)上递减,在(-a,+∞)上递增,
所以f(x)极小值=f(-a)=-a2+a-aln(-a).
当a>-12时,同理可得f(x)在(0,-a)上递),在(-a,12)上递减,在(12,+∞)递增,
所以:f(x)极小值=f(12)=a-14-aln2.
当a=-12时,f′(x)≥0恒成立,此时无极小值.
(2)函数y=f(x)与y=g(x)的图象在x∈[1,3]上有两个不同的交点M,N,
即为f(x)=g(x)在x∈[1,3]上有两个不同的根⇒x²+(2a-1)x+4x=0在x∈[1,3]上有两个不同的根.
令F(x)=x2+(2a-1)x+4x,要使函数在x∈[1,3]上有两个不同的根,
须满足{F(1)≥0F(2)<0F(3)≥0⇒{1+(2a-1)+4≥04+2(2a-1)+2<09+3(2a-1)≥0⇒-119<a<-1.
故a的取值范围是:-119<a<-1.

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com